
Inverse problems in dynamic cognitive modeling
Peter beim Graben1,a� and Roland Potthast2
1School of Psychology and Clinical Language Sciences, University of Reading, Reading,
Berkshire RG6 6AH, United Kingdom
2Department of Mathematics, University of Reading, Reading, Berkshire RG6 6AH, United Kingdom

�Received 28 November 2008; accepted 11 February 2009; published online 31 March 2009�

Inverse problems for dynamical system models of cognitive processes comprise the determination
of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models,
respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where
cognitive processes are first described as algorithms that operate on complex symbolic data struc-
tures. Second, symbolic expressions and operations are represented by states and transformations in
abstract vector spaces. Third, prescribed trajectories through representation space are implemented
in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a
special case and show that the kernel construction problem is particularly ill-posed. We suggest a
Tikhonov–Hebbian learning method as regularization technique and demonstrate its validity and
robustness for basic examples of cognitive computations. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3097067�

Inverse problems, the determination of system param-
eters from observable or theoretically prescribed dynam-
ics, are prevalent in the cognitive neurosciences. In par-
ticular, the dynamical system approach to cognition
involves learning procedures for neural networks or
neural/dynamic fields. We present dynamic cognitive
modeling as a three tier top-down approach comprising
the levels of (1) cognitive processes, (2) their state space
representation, and (3) dynamical system implementa-
tions that are guided by neuroscientific principles. These
levels are passed through in a top-down fashion: (1) cog-
nitive processes are described as algorithms sequentially
operating on complex symbolic data structures that are
decomposed using so-called filler/role bindings; (2) data
structures are mapped onto points in abstract vector
spaces using tensor product representations; and (3) cog-
nitive operations are implemented as dynamics of neural
networks or neural/dynamic fields. The last step involves
the solution of inverse problems, namely, training the sys-
tem’s parameters to reproducing prescribed trajectories
of cognitive operations in representation space. We show
that learning tasks for neural/dynamic field models are
particularly ill-posed and propose a regularization tech-
nique for the common Hebb rule, resulting into modified
Tikhonov–Hebbian learning. The methods are illustrated
by means of three instructive examples for basic cognitive
processing, where we show that Tikhonov–Hebbian
learning is a quick and simple training algorithm, not
requiring orthogonality or even linear independence of
training patterns. In fact, the regularization is robust
against linearly dependent patterns as they could result
from oversampling.

I. INTRODUCTION

Investigating nonlinear dynamical systems is an impor-
tant task in the sciences. In the ideal case, one has a theoret-
ical model in form of differential �or integrodifferential�
equations and computes their analytical solutions. However,
this approach is often not tractable for complex nonlinear
systems. Here, analytical techniques, such as stability, bifur-
cation, or synchronization analysis, provide insights into the
structural properties of the flow in phase space. If these
methods are applicable only up to some extent, numerical
solution of the model equations, i.e., determining the sys-
tem’s trajectories through phase space for given initial and
boundary conditions, is of great importance. This forward
problem for nonlinear dynamical systems is nowadays well
understood and appreciated in science.

By contrast, the peculiarities and possible pitfalls of the
inverse problem of determining the system’s equations �or
the system’s parameters for a given class of equations� from
observed or prescribed trajectories are less acknowledged in
nonlinear dynamical system research today. Inverse prob-
lems are typically ill-posed. This notion does not only refer
to the fact that there is, in general, no unique parametrization
for a prescribed solution, but moreover, that such parametri-
zations are highly unstable and extremely sensitive to train-
ing data.

Related to dynamical system models of cognitive
processes,1–4 inverse problems are prevalent in several train-
ing algorithms for artificial neural networks �ANNs�.5,6 It is
the aim of the present study to investigate these problems, in
principle, by means of continuum approximations for neural
networks, which are known as neural or dynamic field mod-
els. We show that learning tasks for such fields are particu-
larly ill-posed and suggest a regularization technique for the
common Hebb rule, resulting into modified Tikhonov–
Hebbian learning.a�Electronic mail: p.r.beimgraben@reading.ac.uk.

CHAOS 19, 015103 �2009�

1054-1500/2009/19�1�/015103/21/$25.00 © 2009 American Institute of Physics19, 015103-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1063/1.3097067
http://dx.doi.org/10.1063/1.3097067

This paper is structured as follows. Section II reviews
cognitive modeling and inverse problems related to this field.
Inspired by seminal work of Marr and Poggio,7 we introduce
dynamic cognitive modeling as a three tier top-down ap-
proach, as illustrated in Fig. 1. �1� At the highest level of
mental states and processes, the relevant data structures and
algorithms from the prospect of the computer metaphor of
the mind8 are determined in order to obtain symbolic patterns
and transformation rules that are described by the so-called
filler/role bindings.9–14 �2� These symbolic structures and
processes are mapped onto points and continuous
trajectories15 in abstract vector spaces, respectively, by tensor
product representations.9–14 Interestingly, the word “repre-
sentation” does not only refer to models of mental represen-
tations here. It assumes a precise meaning in terms of math-
ematical representation theory:16,17 cognitive operations are
represented as operators in neural representation spaces. �3�
Cognitive representations are implemented by nonlinear dy-
namical systems obeying guiding principles from the neuro-
sciences. Here, we discuss the inverse problem for a large
class of continuous neural networks �so-called neural or dy-
namic field models�18–34 described by integrodifferential
equations.

In Secs. III and IV we demonstrate how inverse prob-
lems for dynamical system models of cognition can be regu-
larized by a Tikhonov–Hebbian learning rule for neural field
models. Three examples are constructed in Sec. III and pre-
sented in Sec. IV. Section V gives a concluding discussion.

II. DYNAMIC COGNITIVE MODELING

This section introduces dynamic cognitive modeling as a
three tier hierarchy, comprising �1� cognitive processes and
symbolic structures, �2� their state space representations, and
�3� their implementation by neurodynamics,7 which is pur-
sued from the top level �1� down to the bottom level �3�.

A. Cognitive processes

According to the computer metaphor of the mind,8 cog-
nition is essentially symbol manipulation obeying combina-
torial rules.35,36 A paradigmatic concept for classical cogni-
tive science is the Turing machine as a formal computer.37

However, the Turing machine is of only marginal interest in
cognitive psychology38 and psycholinguistics39 as it has un-
limited computational resources in the form of a randomly
accessible bi-infinite memory tape. Therefore, less powerful
devices such as pushdown automata or nested stack
automata37,40 are of greater importance for computational
models of cognitive processes. A pushdown automaton has a
one-sided infinite memory tape that is accessible in “last in/
first out” manner, i.e., the device has only access to the top-
most symbol stored at the stack.

Turing machines, pushdown automata, or nested stack
automata define particular formal languages, namely, the re-
cursively enumerable languages, context-free languages, and
indexed languages, respectively.37 Especially the latter both
are relevant in the field of computational psycholinguistics
because sentences can be described by phrase structure trees
and some restricted operations acting on them.40–44

1. Data structures and algorithms
The first step in devising a computational dynamical sys-

tem model is specification of the relevant data structures and
algorithms where the former instantiates a model for mental
representations, while the latter defines the mental or cogni-
tive computations. In computer science, complex symbolic
data structures are e.g., lists, trees, nested lists, often called
“frames,” or even lists of trees, etc. Figure 2 depicts some
examples for data structures.

The first example in Fig. 2�a� is a list of three items, the
symbols a and b �note that symbolic expressions are printed
in Roman font subsequently�, where a takes the first and
third position, while b occupies the second position of the
list. Assuming a pushdown automaton that has only access to
the first symbol a in the list, we have a simple description of
a stack tape. Such an automaton can achieve symbolic op-
erations, e.g., “push,” where ��=push�a ,�� places a new
symbol a at the top of the stack, denoted �= �a1 ,a2 , . . . ,an�,
such that ��= �a ,a1 ,a2 , . . . ,an�. Starting with an empty list,
we could, e.g., apply push three times resulting into the state
transitions

�0 = � �, �1 = �a� = push�a,�0� ,

�1�
�2 = �a,a� = push�a,�1�, �3 = �a,a,a� = push�a,�2� .

Another important interpretation of lists such as in Fig. 2�a�
is related to logical inferences. Replacing, e.g., the symbol a
by 0 and b by 1, yields the list �0,1,0� that can be regarded as
one row of a logical truth table, where the first two items are

FIG. 1. Three tier top-down approach to inverse dynamic cognitive
modeling.

(a) (a, b, a) (b) ((a, b), (a, b)) (c)

a b a b

(d) S

S

a b

S

a b

(e) (a, (b, (a, b)), b)

FIG. 2. Complex symbolic data structures for mental representations. �a�
simple list, �b� list of simple lists, �c� the corresponding tree for �b�, �d� the
same tree with node labels S, �e� an even more complex frame of nested
lists.

015103-2 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

the inputs and the third is the output of a logical function. In
our case, the list �0, 1, 0� is the second row of the truth table
of the logical equivalence relation equiv, defined in Table I.

Figure 2�b� shows a complex lists containing two simple
lists. This structure can be regarded as a tree shown in Fig.
2�c�. Figure 2�d� introduces the concept of a labeled tree
where to each node a symbolic label is assigned. From a
labeled tree one can derive a context-free grammar �CFG� of
production rules by interpreting each tree branching as a rule
of the form X→YZ, where X denotes the mother node, and
Y, and Z its immediate daughters. Therefore, example in Fig.
2�d� gives rise to the CFG

T = �a,b�, N = �S�, P = ��1� S → S S

�2� S → a b
� , �2�

where T= �a ,b� is called the set of terminal symbols, N
= �S� that of nonterminal symbols, with the distinguished
start symbol S, and the production rules expand one nonter-
minal at the left-hand side into a string of nonterminals or
terminals at the right-hand side. Applying the rules from a
CFG recursively describes a tree generation dynamics as,
e.g., depicted in Fig. 10 in Sec. III D. Finally, Fig. 2�e� pre-
sents an even more complex expression of nested lists that
might be regarded as a model for cognitive frames.

Coming back to the general paradigm of a Turing ma-
chine, such an automaton is formally defined as a 7-tuple

MTM = �Q,N,T,�,q0,b,F� , �3�

where Q is a finite set of machine control states, N is another
finite set of tape symbols, containing a distinguished “blank”
symbol b, T�N \ �b� is the set of admitted input symbols,

�:Q � N → Q � N � �L,R� �4�

is a partial state transition function �the “machine table”�
determining the action of the machine when q�Q is the
current state at time t and a�N is the current symbol being
read from the memory tape. The machine moves then into
another state q��Q at time t+1 replacing the symbol a by
another symbol a��N and shifting the tape either one place
to the left �L� or to the right �R�. Figure 3 illustrates such a
state transition. Finally, q0�Q is a distinguished initial state
and F�Q is a set of “halting states” assumed by the machine
when a computation terminates.37

In order to describe the machine’s behavior as determin-
istic dynamics in symbolic “phase space,” one introduces the
notion of a state description, which is a triple

s = ��,q,�� �5�

with � ,��N� �i.e., they are lists of tape symbols from N of
arbitrary, yet finite, length, delimited by blank symbols b�.

Then, the transition function can be extended to state de-
scriptions by

��:S → S, s� = ���s� , �6�

where S=N��Q�N� now plays the role of a phase space of
a discrete dynamical system. We discuss consequences of
this view in the next section.

2. Filler/role bindings
However, first we introduce a general framework for for-

malizing arbitrary data structures and symbolic operations
suggested by Smolensky and co-workers9–12 and recently de-
ployed by beim Graben et al.13,14 This filler/role binding de-
composition identifies the particular symbols occurring in
complex expressions with the so-called fillers f �F, where F
is some finite set of cardinality NF. Applied to the Turing
machine, we can therefore choose F=N, the set of tape sym-
bols, including blank and input symbols. Fillers are bound to
symbolic roles r�R, where R is another finite �or countable�
set of possible roles. Examples for such roles are �1� slots for
list positions R= �ri 	1� i�n� indicating the ith position in a
list of length n; �2� slots for tree positions R= �r1 ,r2 ,r3�,
where

r1 = mother, r2 = left daughter, r3 = right daughter, �7�

as indicated in Fig. 4; and �3� slots in arbitrary cognitive
frames as in Fig. 2�e�.

Considering the example from Fig. 2�a� yields fillers F
= �a ,b� and roles R= �r1 ,r2 ,r3� for the three list positions. A
filler/role binding is now a set of pairs �f i ,rj� when filler f i

occurs at �is “bound” to� role rj. Thus, the filler/role decom-
position for example Fig. 2�a� is given as

TABLE I. Truth table of the logical equivalence relation A equiv B=C.

A B C

0 0 1
0 1 0
1 0 0
1 1 1

FIG. 3. Example state transition from �a� to �b� of a Turing machine with
��1,a�= �2,b ,L�.

015103-3 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

f� = ��a,r1�,�b,r2�,�a,r3�� . �8�

Such a relation can be regarded as a complex filler that could
be recursively bound to roles again. Therefore, we obtain the
filler/role decomposition for example Fig. 2�b� as a set of
pairs of sets of pairs

fT = ����a,r1�,�b,r2��,r1�,���a,r1�,�b,r2��,r2�� , �9�

where the complex filler, namely, the list ��a ,r1� , �b,r2�� is
bound to both roles r1 and r2 recursively. This is also the
correct decomposition of the tree from Fig. 2�c�.

For describing the tree from Fig. 2�d�, the node labels
have to be taken into account. As fillers we choose the labels
F= �S,a ,b�, whereas the roles R= �r1 ,r2 ,r3� are given
through Eq. �7�. In a bottom-up manner, we first decompose
the leftmost subtree L by assigning filler S to the root node
r1, filler a to the left daughter node r2 and filler b to the right
daughter node r3, obtaining the complex filler

fL = ��S,r1�,�a,r2�,�b,r3�� . �10�

This is also the correct decomposition of the right subtree fR,
such that fR= fL. Then, fL is bound to the left daughter r2 of
the next tree level, fR is bound to its right daughter r3 and its
root node r1 is occupied by the simple filler S again, such
that

fT = ��S,r1�,�fL,r2�,�fR,r3�� . �11�

The complete filler/role binding of the tree Fig. 2�d� is hence

fT = ��S,r1�,���S,r1�,�a,r2�,�b,r3��,r2�,

���S,r1�,�a,r2�,�b,r3��,r3�� . �12�

Application of filler/role binding to state descriptions of Tur-
ing machines is possible in several ways. Most straightfor-
wardly, one assigns three role positions RS= �r1 ,r2 ,r3� to the
three slots in the state description �Eq. �5��. Then, the strings
� ,��N� are regarded as complex fillers, namely, lists of
tape symbols F=N with a countable number of slots RL

= �si 	 i�N�. Additionally, the machine states are represented
by another set of fillers FQ=Q that only bind to role r2.
Thereby, one possible Turing machine filler/role decomposi-
tion is

fs = ����a1,s1�,�a2,s2�, . . . ,�an,sn��,r1�,�q,r2�,

���b1,s1�,�b2,s2�, . . . ,�bm,sm��,r3�� , �13�

with ai ,bj �F and n ,m�N.

However, another decomposition is more obvious. Here,
the state description is regarded as a concatenation product

� = �� · q · � �14�

of the strings �, � with the state q in the given order, where
�� is the string � in reverted order, ��=anan−1¯a1.13 Intro-
ducing the notion of “dotted sequences,”45 yields a two-sided
list of tape and control state symbols from F=N�Q, where
the dot “.” indicates the position of the control state q�Q at
the tape,

� = anan−1 ¯ a1q . b1b2 ¯ bm. �15�

Moore46,47 proved that this description of a Turing machine
leads to generalized shifts investigated in symbolic
dynamics.45–48 Then, the filler/role decomposition of a Tur-
ing machine is that of a simple list

f� = ��an,sn−1�,�an−1,sn−2�, . . . ,

�a1,s−1�,�q,s0�,�b1,s1�,�b2,s2�, . . . ,�bm,sm�� , �16�

where we have introduced integer list positions as roles R
= �si 	 i�Z�. A more axiomatic framework for the filler/role
binding was presented by beim Graben et al.14

B. State space representations

The filler/role decomposition of complex symbolic data
structures is a first step toward their state space representa-
tion. This is achieved by the tensor product representation
independently invented by Smolensky and co-workers9–12

and Mizraji.49,50 The tensor product calculus is a universal
framework to describe different state space representations
for dynamic cognitive modeling. We first review its general
algebraic framework and discuss particular representations in
the subsequent subsections.

In order to employ the tensor product representation, the
respective fillers and roles, f i�F and rj �R, are mapped
onto vectors from two vector spaces VF and VR by a function

�:F� → VF � VR, ��f�� = f�, �17�

where F� contains the roles and the simple fillers
�F�R�F�� but also all complex fillers f� �for the exact
definition of F�, see Ref. 14� such that fi=��f i��VF repre-
sents a filler and r j =��rj��VR represents a role.

A filler/role binding is then represented by the direct sum
of tensor products

���f i,rj�� = ��f i� � ��rj� , �18�

����f i1
,rj1

�,�f i2
,rj2

��� = ��f i1
� � ��rj1

� � ��f i2
� � ��rj2

� . �19�

As a consequence, the image F=��F�� is isomorphic to the
Fock space

F = �
n=1

�

VF � �
k=1

n

VR

of many particle quantum systems.11,17

Applying this mapping to the examples from Fig. 2
yields the following representations. The simple list �Eq. �8��
from Fig. 2�a� is represented by a vector

r1

r2 r3
FIG. 4. Elementary role positions of a labeled binary tree.

015103-4 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

���� = a � r1 � b � r2 � a � r3 �20�

with filler vectors a=��a� and b=��b�. �For the sake of clar-
ity, we write ���� instead of ��f�� in the sequel which would
be the precise notation as � is applied to the filler/role bind-
ing f� and not to the symbolic expression � itself.� Corre-
spondingly, the nested list from Fig. 2�b� and the tree from
Fig. 2�c� �Eq. �9�� are represented by tensor products of
higher rank

��T� = �a � r1 � b � r2� � r1 � �a � r1 � b � r2� � r2

= a � r1 � r1 � b � r2 � r1 � a � r1 � r2 � b � r2

� r2.

In the same way, we obtain the tensor product representation
of the tree from Fig. 2�d�, derived in Eq. �12� as

��T� = S � r1 � �S � r1 � a � r2 � b � r3� � r2

� �S � r1 � a � r2 � b � r3� � r3. �21�

Also the tensor product representations for the different
filler/role decompositions of Turing machine state descrip-
tions are constructed similarly.

1. Arithmetic representations
Dolan and Smolensky,9 Smolensky,10 Smolensky and

Legendre,11 Smolensky,12 Mizraji,49,50 and more recently,
beim Graben et al.13 used finite-dimensional arithmetic vec-
tor spaces VF=Rp, VR=Rq �p ,q�N�, and their Kronecker
tensor products to obtain arithmetic vector space representa-
tions that can be regarded as activation states of neural net-
works or connectionist architectures. Setting, e.g.,

a =
1

0
�, b =
0

1
�, r1 = �1

0

0

, r2 = �0

1

0

, r3 = �0

0

1

yields the tensor product representation of the simple list
�Eq. �20�� from example in Fig. 2�a�

���� =
1

0
� � �1

0

0

 �
0

1
� � �0

1

0

 �
1

0
� � �0

0

1

=�
1

0

0

0

0

0

 � �
0

0

0

0

1

0

 � �
1

0

0

0

0

0

 =�
2

0

0

0

1

0

 .

Obviously, the dimensionality of this representation is expo-
nentially increasing with increasing recursion, thus leading
to an almost meaningless vacuum, where symbolic states are
sparsely scattered around �see, however, Refs. 11 and 12 for
possible solutions�.

2. Fractal representations
In order to avoid sparse high-dimensional state space

representations, combinations of vectorial with purely nu-
merical encodings, the so-called fractal encodings were used
by Siegelmann and Sontag51 and Tabor.52,53

Consider again the list example �Eq. �20�� from Fig. 2�a�
with two fillers F= �a ,b� and a countable number of list po-
sition roles R= �rj 	 j�N�. Then the assignments ��a�=0,
��b�=2, and ��rj�=3−j yield a numerical representation of
any list � of n symbols from F by triadic numbers

���� = �
j=1

n

aj3
−j with aj � �0,2� , �22�

which constitutes exactly the Cantor set as representation
space.

Siegelmann and Sontag51 used such fractal encoding for
the Turing machine tape sequences �, � in the state descrip-
tion Eq. �5�, yielding

x = ���� = �
j=1

n

ajg
−j, y = ���� = �

j=1

m

bjg
−j �23�

with an appropriate base number g�N. As role vectors for
the state description, they chose

r1 =
1

0
�, r2 = 1, r3 =
0

1
� ,

where the role of r2 for the control states q�Q was simply
taken as the scalar constant one. Moreover, the p control
states were represented in a local way by p canonical basis
vectors ��q�=ek of Rp. The complete tensor product repre-
sentation of a Turing machine state s is thus

s = ��s� = �x,0, . . . ,1, . . . ,0,y�T �24�

with 1 in the k+1th position encoding the kth control state q.
Other higher-dimensional fractal representations are ob-

tained for arbitrary filler symbols. Assigning to each filler
f i�F a different vector ��f i�= fi�Rp and using the one-
dimensional role representation ��rj�=2−j entails a
p-dimensional Sierpinski sponge

S = �x � �− 0.5,0.5�p	x = �
j=1

n

2−jf j, n � N� �25�

as representation space.52,53 Tabor,52–54 e.g., represented
three symbols �a,b,c� by planar vectors

a = 2−2
 1

− 1
�, b = 2−2
− 1

− 1
�, c = 2−2
− 1

1
� . �26�

The state space resulting from this assignment in combina-
tion with Eq. �25� is the Sierpinski gasket shown in Fig. 5.

Since the Sierpinski gasket can be generated by an iter-
ated function system, Tabor52–54 proposed a general class of
computational dynamical systems, called dynamical au-
tomata. Formally, a dynamical automaton is defined as an
8-tuple

015103-5 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

MDA = �X,F,P,T,	,x0,A� , �27�

where X is a metric space �the automaton’s phase space�, F
is a finite set of functions, fk :X→X, 1�k�K, P is a parti-
tion of X into M pairwise disjoint compartments, Ci�P, that
cover the whole phase space X, T is a finite input alphabet,
x0�X is the initial state, and

	:P � T � F → �0,1� �28�

is the input mapping specifying for each compartment Ci

�P and each input symbol aj �T whether a function fk

�F is applicable �	�Ci ,aj , fk�=1� or not �	�Ci ,aj , fk�=0�
when the current state x�Ci. Finally, A�X is a region of
accepting states of the dynamical automaton. �We refer to the
more general definition in Refs. 52 and 54 here.�

Using this description, Fig. 5 illustrates a particular sub-
class, a pushdown dynamical automaton �PDDA� recogniz-
ing the context-free grammar

T = �a,b,c,d�, N = �S,A,B,C,D� ,

�29�
P = �S → ABCD,S →
,A → aA,A → a,B → bB,B → b,

C → cC,C → c,C → aS,C → a,D → dS,D → d� ,

by setting

X = �− 0.5,0.5�2 \ �0,0.5�2,

F = � f1�x� = x +
0

2
�, f2�x� = 2x +
 2

− 2
�,

f3�x� =
1

2
x −
1

1
�� ,

�30�
P = �C1 = �− 0.5,0� � �− 0.5,0�,C2 = �0,0.5� � �− 0.5,0�,

C3 = �− 0.5,0� � �0,0.5�� ,

T = �a,b,c�

for 	 see Table II,

x0 =
0

0
�, A = �x0� .

Table II presents the admitted input mappings where
	�Ci ,aj , fk�=1.

Dynamical automata cover a broad range of computa-
tional dynamical systems. If, e.g., the number of functions K
in F equals the number of input symbols N in T and
	�Ci ,aj , f j�=1 for all compartments Ci�P, function f j is
uniquely associated with symbol aj. In this case, F is an
iterated function system and the dynamical automaton is
called dynamical recognizer.55–57 If, on the other hand, the
phase space is the unit square X= �0,1�2, the partition P is
rectangularly generated by Cartesian products of intervals of
the x- and y-axes containing the same number of cells as the
function set F, and if, furthermore, these functions fk are
piecewise affine linear and if eventually 	�Ci ,aj , f i�=1 for all
input symbols aj �T, then the functions fk are piecewise
affine linear branches of one unique nonlinear map f :X
→X and the symbolic dynamics of f is a generalized shift, as
discussed in Sec. II A 1.45–47 The resulting dynamical au-
tomaton does not longer process input symbols directly but
rather according to an autonomous nonlinear dynamics given
by f . These systems have been called nonlinear dynamical
automata.4,13,58 Finally, if the number of functions K=2M,
where M is the number of compartments of the partition, and
if the criteria for dynamical recognizers and for nonlinear
dynamical automata are both satisfied, one can chose the fk

in such a way to obtain an interacting nonlinear dynamical
automaton.13,59

3. Gödel representations
Nonlinear dynamical automata as a subclass of dynami-

cal automata are explicitly constructed by two-dimensional
tensor product representations. These Gödel encodings are
obtained from scalar representations of fillers as integer num-
bers and fractal roles, respectively.

Let us again consider the list example from Fig. 2�a�
with two fillers F= �a ,b� and a countable number of list po-
sition roles R= �rj 	 j�N�. Setting ��a�=0, ��b�=1 and ��rj�
=2−j entails then a representation of a list � with symbols
from F as binary numbers

���� = �
j=1

n

aj2
−j with aj � �0,1� . �31�

More generally, a set of N fillers is mapped by the Gödel
encoding onto N−1 positive integers. A string or list � of
length n of these symbols is then represented by an N-adic
rational number

FIG. 5. �Color online� PDDA with stack tape represented by the Sierpinski
gasket in the fractal encoding Eq. �25�. The vectors a, b, and c are defined in
Eq. �26�. The blue lines demarcate the partition compartments in Eq. �30�.

TABLE II. Admissible input mappings �	�Ci ,aj , fk�=1� for PDDA defined
in Eq. �30� and displayed in Fig. 5.

Compartment�s� Input State transition

C1 b f1

C3 c f2

Any a f3

015103-6 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

���� = �
j=1

n

ajN
−j . �32�

The main advantage of Gödel codes is that they could be
naturally extended to lists of infinite length, such that ��f��
=� j=1

� ajN
−j is then a real number in the unit interval �0, 1�.

Moore46,47 used a Gödel encoding for the state description
�Eq. �15�� of a Turing machine by a generalized shift. De-
composing a dotted bi-infinite sequence

� = ¯ a2a1q . b1b2¯

into two one-sided infinite sequences

�L = qa1a2 ¯ , �R = b1b2b3¯ �33�

and computing their Gödel numbers

x = ���L� = ��q�N−1 + �
j=1

n

��aj�N−j−1,

�34�

y = ���R� = �
j=1

n

��bj�N−j

yields the so-called symbologram representation of the sym-
bol sequence � and thus of the state description of a Turing
machine in the unit square.60,61 The generalized shift is
thereby represented by a piecewise affine linear map whose
branches are defined at the domains of dependence of the
shift, thus entailing a nonlinear dynamical automaton. Gödel
representations were used by beim Graben and
co-workers4,13,58,59 in the field of computational psycholin-
guistics.

4. Functional representations
The high dimensionality and sparsity of arithmetic ten-

sor product representations should be avoided in dynamic
cognitive modeling when recursion or parallelism are
involved.13,14 In such cases, a further generalization of dy-
namical automata, where the metric space X is an infinite-
dimensional Banach or Hilbert space, appears to be appro-
priate. Such functional representations were suggested for
quantum automata by Moore and Crutchfield.57 Related ap-
proaches represent compositional semantics through Hilbert
space oscillations,62–65 or linguistic phrase structure trees
through spherical harmonics.14

In order to construct a functional representation for our
simple example from Fig. 2�a�, we assign particular basis
functions

��a� = fa�x� = 1, ��b� = fb�x� = x �35�

and

��r1� = g1�y� = sin y , �36�

��r2� = g2�y� = sin 2y, ��r3� = g3�y� = sin 3y �37�

to fillers and roles, respectively. Then, the tensor product in
function space leads to functions of several variables, e.g.,
given as

��b� � ��r2� = �fb � g2��x,y� = fb�x�g2�y� = x sin 2y . �38�

Accordingly, the functional tensor product representation of
the list �= �a ,b ,a� turns out to be

���� = fa�x�g1�y� + fb�x�g2�y� + fa�x�g3�y�

= sin y + x sin 2y + sin 3y . �39�

As another example, we give a functional representation of
the logical equivalence relation discussed in Sec. II A 1.
Here, we encode the inputs A and B to the truth Table I as
fillers A ,B� �0,1�. The first two input positions are repre-
sented by one-dimensional Gauss functions centered around
sites y1 ,y2�R. In addition, we introduce a third input G
=1, acting as a gating variable, bound to another Gaussian
centered around a third site y3�R. All three inputs are lin-
early superimposed in the one-dimensional tensor product
representation as

���� = Ae−R	y − y1	2 + Be−R	y − y2	2 + Ge−R	y − y3	2, �40�

where R is a characteristic spatial scale. In Sec. III C we use
a second spatial dimension x�R to implement logical infer-
ence through traveling pulses with lateral inhibition in a neu-
ral field.

Choosing basis functions for functional tensor product
representations naively could lead to an explosion of the
number of independent variables. This can be avoided by
selecting suitable basis functions with particular recursion
properties. One of these systems is spherical harmonics used
in the angular momentum algebra of quantum systems. Here,
the Clebsch–Gordan coefficients allow an embedding of ten-
sor products for coupled spins into the original single particle
space.66 We demonstrate this construction for our example
tree T from Fig. 2�d� �Eq. �21��.

In a first step, we identify the three fillers F= �S,a ,b�
with three roots of unity

�k =
2�k

3
�41�

leading to the harmonic oscillations in the variable x,

fk�x� = ei�kx. �42�

Then, we regard the tree in Fig. 4 as a “deformed” term
schema for a spin-one triplet as in Fig. 6.

Figure 6 indicates that the three role positions r1, r2, r3

�Eq. �7�� in a labeled binary tree are represented by three
z-projections of a spin-one particle,

��r2� = 	1,− 1�, ��r1� = 	1,0�, ��r3� = 	1,1� , �43�

which have an L2�S� representation by spherical harmonics

ρ(r2) = |1,−1〉

ρ(r1) = |1,0〉

ρ(r3) = |1,1〉

�

�

�

�

FIG. 6. Tree roles in a spin-one term schema.

015103-7 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

	j,m� = Y jm�y� �44�

with y= �
 ,�� and
� �0,��, �� �0,2��.
For treating complex phrase structure trees, we compute

the tensor products of role vectors ��ri� � ��rj�. Inserting the
spin eigenvectors from Eq. �43� yields expressions such as

	j1,m1� � 	j2,m2� = 	j1,m1, j2,m2� , �45�

well known from the angular momentum coupling in quan-
tum mechanics.66

In quantum mechanics, the product states �Eq. �45�� gen-
erally belong to different multiplets, which are given by the
irreducible representations of the spin algebra sl�2�. These
are obtained by the Clebsch–Gordan coefficients in the ex-
pansions

	j,m, j1, j2� = �
m1,m2=m−m1

�j1,m1, j2,m2	j,m, j1, j2�

�	j1,m1, j2,m2� , �46�

where the total angular momentum j obeys the triangle rela-
tion

	j1 − j2	 � j � j1 + j2. �47�

In order to describe recursive tree generation by wave func-
tions of only one �spherical� variable y= �
 ,��, we invert Eq.
�46�, leading to

	j1,m1, j2,m2� = �
j=	j1−j2	

j1+j2

�j,m, j1, j2	j1,m1, j2,m2�	j,m, j1, j2�

�48�

with the constraint m=m1+m2.
Equation �48� has to be applied recursively for obtaining

the role positions of more and more complex phrase structure
trees. Finally, a single tree is represented by its filler/role
bindings in the basis of spherical harmonics after contraction
over 	j1 , j2�,

��T� = �
jkm

ajkmfk�x�Y jm�y� , �49�

where the coefficients ajkm=0 if filler k is not bound to pat-
tern Y jm. Otherwise, the ajkm encode the Clebsch–Gordan
coefficients in Eq. �48�.

Now we are able to construct the functional tensor prod-
uct representation for the tree in Fig. 2�d�. Its representation
in algebraic form was obtained in Eq. �21�. Inserting the spin
representation for the roles yields

��S�	1,0� + ��S�	1,0,1,− 1� + ��a�	1,− 1,1,− 1�

+ ��b�	1,1,1,− 1� + ��S�	1,0,1,1� + ��a�	1,− 1,1,1�

+ ��b�	1,1,1,1� . �50�

Expressing the tensor products by Eq. �48� yields first

	1,0�	1,− 1� = 	1,0,1,− 1�

= �
j=0

2

�j,− 1,1,1	1,0,1,− 1�	j,− 1,1,1�

= �0,− 1,1,1	1,0,1,− 1�	0,− 1,1,1�

+ �1,− 1,1,1	1,0,1,− 1�	1,− 1,1,1�

+ �2,− 1,1,1	1,0,1,− 1�	2,− 1,1,1� .

The first Clebsch–Gordan coefficient �0,−1,1 ,1 	1,0,1,−1�
=0 as a spin j=0 particle does not permit an m=−1 projec-
tion. The two other Clebsch–Gordan coefficients are
�1,−1,1 ,1 	1,0 ,1 ,−1�= �2,−1,1 ,1 	1,0 ,1 ,−1�=1 /�2.

Correspondingly, we obtain for

	1,− 1�	1,− 1� = 	1,− 1,1,− 1�

= �
j=0

2

�j,− 2,1,1	1,− 1,1,− 1�	j,− 2,1,1�

= �0,− 2,1,1	1,− 1,1,− 1�	0,− 2,1,1�

+ �1,− 2,1,1	1,− 1,1,− 1�	1,− 2,1,1�

+ �2,− 2,1,1	1,− 1,1,− 1�	2,− 2,1,1� .

Here, the first two Clebsch–Gordan coefficients vanish
because spins j=0 and j=1 forbid m=−2. Therefore, only
�2,−2,1 ,1 	1,−1,1 ,−1�=1 accounts for this state.

Finally, we consider

	1,1�	1,− 1� = 	1,1,1,− 1�

= �
j=0

2

�j,0,1,1	1,1,1,− 1�	j,0,1,1�

= �0,0,1,1	1,1,1,− 1�	0,0,1,1�

+ �1,0,1,1	1,1,1,− 1�	1,0,1,1�

+ �2,0,1,1	1,1,1,− 1�	2,0,1,1� .

Here, m=0 is consistent with j=0,1 ,2 such that all three
terms have to be taken into account through
�0,0 ,1 ,1 	1,1 ,1 ,−1�=1 /�3, �1,0 ,1 ,1 	1,1 ,1 ,−1�=1 /�2,
and �2,0 ,1 ,1 	1,1 ,1 ,−1�=1 /�6.

Thus, we have constructed the functional representation
of the left subtree of Fig. 2�d�. The corresponding expres-
sions for the right subtree were derived in Ref. 14. The com-
plete spherical wave representation of the tree in Fig. 2�d� is
then

��T� = fS�x�Y1,0�y� +
fS�x�

�2
�Y1,−1�y� + Y2,−1�y�� + fa�x�Y2,−2�y�

+ fb�x�� 1
�3

Y0,0�y� + 1
�2

Y1,0�y� + 1
�6

Y2,0�y��
+

fS�x�
�2

�Y2,1�y� − Y1,1�y�� + fa�x�� 1
�3

Y0,0�y� − 1
�2

Y1,0�y�

+ 1
�6

Y2,0�y�� + fb�x�Y2,2�y� , �51�

where the fillers are functionally represented through
Eq. �42�.

5. Representation theory
Up to this point, we gave on overview about different

state space representations for complex symbolic data struc-
tures that could be regarded as formal models of mental or
cognitive states. Cognitive processes, by contrast, were com-
pared with algorithms according to the computer metaphor
of the mind. Algorithms are generally sequences of instruc-
tions, or more specifically, of symbolic operations acting

015103-8 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

upon data structures and symbolic states. Thus, a cognitive
process P=A1 ;A2 ; . . . ;An composed of n cognitive opera-
tions Ai can be seen as the concatenation product67–69 �indi-
cated by “;”� of partial functions Ai :F�→F�, where F� de-
notes the set of filler/role bindings for symbolic expressions
as introduced in Sec. II B. Two operations Ai and Aj can be
concatenated to another operator P=Ai ;Aj if the image of Aj

is contained in the domain of Ai. Under this restriction, the
operators Ai form an algebraic semigroup since the concat-
enation product is associative.

Having constructed a state space representation F
=��F�� of symbolic data structures, the mapping � can be
formally extended to the operators acting on F�. Cognitive
operations Ai and Aj become thereby represented by map-
pings ��Ai� and ��Aj� such that

��Ai;Aj� = ��Ai� � ��Aj� , �52�

where “�” denotes the usual functional composition in repre-
sentation space, defined as �f �g��x�= f�g�x��. Therefore, the
mapping � preserves the semigroup structure of cognitive
operations and can be properly regarded as a semigroup rep-
resentation in the sense of algebraic representation
theory.16,17

Interestingly, Fock space representations of cognitive op-
erations are piecewise affine linear
mappings9–13,46,47,52–54,58,59 resulting in globally nonlinear
maps at representation space. We present three illustrative
examples in Secs. III and IV. For cognitive operators are
partial functions, their representatives could be pasted to-
gether in several ways entailing nonlinear maps. The explicit
construction of such maps from the well-known linear pieces
establishes the inverse problem for dynamic cognitive mod-
eling. Moreover, since many solutions of the inverse problem
are, in principle, possible, their stability against parametric
perturbation is of great importance. If solutions are highly
unstable, the inverse problem is ill-posed. We discuss these
issues in the remainder of the paper in some detail.

However, we first address another, related problem,
posed by Spivey and Dale.15 Symbolic operations are time
discrete. When a cognitive process P=A1 ;A2 ; . . . ;An applies
to a symbolic initial state s0�F� at time t=0, An brings s0

into another state s1=An�s0� at time t+1 and so on. By con-
trast, brain dynamics is continuous in time. If ��P�=��A1�
���A2� � ¯ ���An� is the representation of P and vt=��st�
�F are representations of the symbolic states at time t, we
have to embed this time discrete dynamics of duration L into
continuous time.

A common approach is a separation ansatz

v�x,t� = �
k=1

L

�k�t�vk�x� �53�

for a functional representation. Here, vk�x� denotes the dis-
crete cognitive state vk at time k represented by a function
over feature space D and �k�t� its corresponding time-
dependent amplitude. Equation �53� is often referred to as an
order parameter ansatz.70 The amplitudes �k�t� are then gov-
erned by ordinary differential equations describing the con-
tinuous time dynamics of the cognitive states v�x , t�.

In order to describe a transient dynamics of duration T
=3, where one cognitive state gradually excites its
successor,14 we made the ansatz

�
d�k�t�

dt
+ �k�t� = gk��0�t�,�1�t�, . . . ,�T�t�� �54�

with delayed couplings

g0�t� = w · f�,�
1.5� − t

�
� , �55�

gl��1, . . . ,�l−1��t� = w · f�,���l−1�t − ���, l � 1 �56�

for t�0. Here, the sigmoidal logistic function f with thresh-
old � and gain � is defined as

f�,��z� =
1

1 + e−��z−�� , �57�

where w, �, �, and � are real positive constants.
Figure 7 displays the dynamics of the amplitudes �k�t� of

three succeeding states v1, v2, and v3. Figure 7�a� shows the
time courses of �k�t�, while Fig. 7�b� depicts a three-
dimensional phase portrait. Obviously, the cognitive states vk

correspond to the maxima of their respective amplitudes. In
phase space, they appear as saddle points, attracting states
from the direction of its precursor and repelling them toward
the direction of its successor. Thus, the unstable separatrices
of these saddle points are connected with each other forming
a heteroclinic sequence.71,72 Rabinovich and co-workers71–74

suggested stable heteroclinic sequences and stable hetero-
clinic channels as a universal account for transient cognitive
computations.

Regarding “pure” tensor product states as saddle points
in continuous time dynamics implies that these symbolically

0 10 20 30
0

0.2

0.4

0.6

0.8

1

time t

λ k

(a)

0
0.5

1

0

0.5

1
0

0.5

1

λ
1

λ
2

λ 3

(b)

FIG. 7. Transient amplitude dynamics of three cognitive states. �a� Time
course of �1�t� �solid�, �2�t� �dashed�, and �3�t� �dotted�, obeying Eqs.
�54�–�57�. �b� Three-dimensional phase portrait. Parameters as in Ref. 14.

015103-9 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

meaningful, representational states will never be reached by
the system’s evolution. Instead, the trajectory approaches
these states from one direction and diverges into another di-
rection. Thus, there is a trade-off between continuous time
dynamics and the interpretation of the system’s behavior as
algorithmic symbol processing. In this sense, continuous
time dynamics does not implement symbolic processing, it
rather approximates it. Thus, one can call dynamics and al-
gorithmic processing incompatible with each other.75

However, this kind of incompatibility could be easily
resolved assuming that tensor product states are prototypes
of symbolic representations in phase space. These prototypes
define equivalence classes and thereby phase space parti-
tions. Then, symbolic states can be identified with partition
cells entered by the system’s trajectory, instead of with single
points in phase space. Consequently, a symbolic dynamics as
discussed in Secs. II and III is obtained, providing an imple-
mentation of algorithmic processing through the change of
the ontology. However, this implementation could be incom-
patible with the phase space dynamics unless the partition is
generating.4,76–78

C. Neurodynamics

Following the top-down path of the three tier approach
for dynamic cognitive modeling, the third and final steps
comprise the above-mentioned implementation of a state
space representation �step two� constructed from the sym-
bolic description �step one�. In the following, we use the
term “implementation” neutrally as inspired by quantum
theory, where a symmetry is implemented at the Fock space
of quantum fields,17 thereby disregarding the philosophical
controversy about whether connectionist models are “mere
implementations” of cognitive architectures.4,11,12,36,75,79–83

A cognitive model is implemented by equipping its rep-
resentation space X with a flow �t :X→X solving dynamical
equations in time t. If X is a finite-dimensional vector space
Rp, these equations are usually ordinary differential �or dif-
ference� equations for the state vector u�t�. If, conversely, X
is an infinite-dimensional function space resulting from a
functional representation, the states are fields u�x , t� obeying
either partial differential equations or, more generally, inte-
grodifferential equations. It is of crucial importance for dy-
namic cognitive modeling that such implementations are
guided by principles from the neurosciences.

Under these guiding principles, we consider ANN mod-
els or connectionist architectures in the first case of finite-
dimensional representations.5,6,9–12,84–86 On the other hand,
neural or dynamic field models are investigated in the second
case of infinite-dimensional, i.e., functional,
representations.18–34

1. Neural networks
A common choice for the dynamics of neural networks

are population rate models, where the ith component ui�t� of
the state vector u�t��X�Rp describes the firing rate or the
firing probability either of a single neuron or of a small neu-
ral population i in the network. The so-called leaky integra-
tor models6,84,85,87,88 are governed by equations of the form

�
dui�t�

dt
+ ui�t� = �

j=1

p

wijf�uj�t�� , �58�

where ui�t� is the time-dependent membrane potential of the
ith neuron in a network of p units. The activation function f
describes the conversion of the membrane potential ui�t� into
a spike train ri�t�= f�ui�t��. The left-hand side of Eq. �58�
characterizes the intrinsic dynamics of a leaky integrator
unit, i.e., an exponential decay of membrane potential with
time constant ��0. The right-hand side of Eq. �58� repre-
sents the net input to unit i: the weighted sum of activity
delivered by all units j that are connected with unit i�j→ i�.
Therefore, the synaptic weight matrix W= �wij� comprises
three different kinds of information: �1� unit j is connected
with unit i if wij�0 �connectivity, network topology�, �2� the
synapse j→ i is excitatory �wij �0�, or inhibitory �wij �0�,
and �3� the strength of the synapse is given by 	wij	.

There are essentially two important network topologies.
If the synaptic weight matrix indicates a preferred direction
of propagation, the network has feed-forward topology. If, on
the other hand, no preferred direction is indicated, the net-
work is recurrent.

Activation functions f depend on particular modeling
purposes. The most common ones are either linear �f�z�=z�
or sigmoidal as in Eq. �57�, which describes the stochastic
all-or-nothing law of neural spike generation.19

Neural network models for cognitive processes have a
long tradition.5,6,11,89–92 Siegelmann and Sontag51 used the
tensor product representation �Eq. �24�� to prove that a recur-
rent neural network of about 900 units implements a Turing
machine. By contrast, using the Gödel representation �Eq.
�34��, Moore46,47 and Siegelmann45 demonstrated that a Tur-
ing machine can, in fact, be implemented as a low-
dimensional neural network. Pollack55 and Tabor52,53 used
cascaded neural networks for implementing dynamical rec-
ognizers and dynamical pushdown automata �Eq. �30�� for
syntactic language processing �for a local representation, see
Ref. 93�. These have been recently generalized by Tabor54,94

to fractal learning neural networks. In order to model word
prediction dynamics, Elman95 suggested simple recurrent
neural networks. This architecture became very popular in
recent years in the domain of language processing.96–99

Kawamoto100 used a Hopfield net101 with exponentially de-
caying activation and habituating synaptic weights to de-
scribe lexical ambiguity resolution. Similar architectures are
Smolensky’s harmony machines11,12,83,102 and Haken’s syner-
getic computers.70,103,104 Vosse and Kempen105 described a
sentence processor through local inhibition in a unification
space. Neural network applications for logic and semantic
processing were proposed in Refs. 49, 50, 62–65, and 106–
109. For further references, see also Refs. 39, 87, and 110.

2. Neural field models
Analyzing and simulating large neural networks with

complex topology is a very hard problem88,111–117 due to the
nonlinearity of the activation function and the large number
of synaptic weights. Instead of computing the sum in the
right-hand side of Eq. �58�, a continuum limit significantly

015103-10 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

facilitates analytical treatment and numeric simulations.
Such continuum approximations of neural networks have
been proposed since the 1960s.18–31

Starting with the leaky integrator network �Eq. �58��, the
sum over all units at the right-hand side is replaced by an
integral transformation of a neural field quantity u�x , t�,
where the continuous parameter x�Rp now indicates the
position i in the network. Correspondingly, the synaptic
weight matrix wij turns into a kernel function w�x ,y�. Then,
Eq. �58� assumes the form of the Amari equation18,30 inves-
tigated in neural field theory.

�
�u�x,t�

�t
+ u�x,t� = �

D

w�x,y�f�u�y,t��dy, x � D, t � 0.

�59�

Interpreting the domain D�Rp of the Amari equation �59�
not as a physical substrate realized by actual biological neu-
rons, but rather as an abstract features space for computa-
tional purposes, one speaks about dynamic field theory.32–34

Neural and dynamic field theory, respectively, found sev-
eral applications in dynamic cognitive modeling. Jirsa and
Haken25,118 and Jirsa et al.119 modeled changes in magne-
toencephalographic �MEG� activity during bimanual move-
ment coordination, while Bressloff and co-workers20,120–125

described the pattern formation and the emergence of hallu-
cinations in primary visual cortex. Infant habituation was
modeled by Schöner and colleagues32–34 through decaying
dynamic fields defined over the visual field of a children
performing memory tasks �see also Ref. 3 for a review�.

3. Inverse problems for neurodynamics
Up to a few examples, where neural architectures or neu-

ral fields can be explicitly designed, the top-down approach
of dynamic cognitive modeling either provides discrete se-
quences of training patters vk�x��X or continuous paths
v�x , t�=�k�kvk�x� �Eq. �59�� in representation space that
have to be reproduced by the state evolution u�x , t�. If the
dynamics is given either by the leaky integrator �Eq. �58��
for a neural network or by the Amari equation �59� for a
neural/dynamic field, the crucial task is the determination of
the system parameters. This is again the inverse problem for
dynamic cognitive modeling: given a prescribed trajectory
v�x , t�, then find the synaptic weight matrix W= �wij� or the
synaptic weight kernel w�x ,y�, respectively, such that
u�x , t�=v�x , t� solves the dynamical law �Eq. �58� or �59��
for all t�0 with initial condition u�x ,0�=v�x ,0�.

Here, we discuss the inverse problem in the framework
of the Amari equation �59�. We prescribe one or several com-
plete time-dependent patterns v��x , t�, �=1, . . . ,n for x�D,
t�0 with some domain D�Rp. For our further discussion,
we assume that the nonlinear activation function f :R
→ �0,1� is known. Then, we search for kernels w�x ,y� for
x ,y�D such that the solutions of the Amari equation with
initial conditions u�x ,0�=v��x ,0� satisfies u�x , t�=v��x , t�
for x�D, t�0, and �=1, . . . ,n.

As a first step, we transform Eq. �59� into a linear inte-
gral equation. Defining

���x,t� = f�v��x,t��, x � D, t � 0, �60�

���x,t� = �
�v��x,t�

�t
+ v��x,t�, x � D, t � 0, �61�

and employing the integral operator

�W���x� = �
D

w�x,y���y�dy, x � D , �62�

leads to a reformulation of the inverse problem into the equa-
tion

���x,t� = W���x,t�, x � D, t � 0, � = 1, . . . ,n , �63�

where here the kernel w�x ,y�, x ,y�D of the linear integral
operator W is unknown. Equation �63� is linear in the kernel
w. It can be rewritten as

� = W� �64�

with

� = ��1, . . . ,�n�, � = ��1, . . . ,�n� .

For every fixed x�D, we can rewrite Eq. �63� as

�x�t� = �
D

��y,t�wx�y�dy, t � 0 �65�

with

wx�y� = w�x,y�, x,y � D, �x�t� = ��x,t�, x � D, t � 0.

We define

�Vg��t� = �
D

k�t,y�g�y�dy, t � 0

with the particular choice k�t ,y�=��y , t� to write Eq. �65� as

�x = Vwx, x � D . �66�

If � is continuous in y and t, then for fixed x, Eq. �66� is a
Fredholm integral equation �58� of the first kind with con-
tinuous kernel �. This equation is known to be ill-posed,126

i.e., we do not have �a� existence or �b� uniqueness in general
and even if we have uniqueness, the solution does not de-
pend in a �c� stable way on the right-hand side.

Fredholm integral equations of the form

�
D

k�t,y�g�y�dy = f�t�

with continuous kernel k�t ,y� are well studied in mathemati-
cal literature �cf., for example, Refs. 126–128�. The analysis
is built on the properties of compact linear operators between
Hilbert spaces. Consider a compact linear operator A :X→Y
with Hilbert spaces X, Y, and its adjoint A�. Then, the non-
negative square roots of the eigenvalues of the self-adjoint
compact operator A�A :X→X are called the singular values
of the operator A. The singular value decomposition126 leads
to a representation of the operator as a multiplication opera-
tor within two orthonormal systems �gn 	n�N� in X and
�fn 	n�N� in Y, such that

015103-11 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

Ag = �
n=1

�

�n�g,gn�fn �67�

for g�X. The representation �67� is also known as spectral
representation of the operator A. For the orthonormal sys-
tems gn and fn we have127

Agn = �nfn, A�fn = �ngn. �68�

If A is injective, the inverse of A is given by

A−1f = �
n=1

�
1

�n
�f , fn�gn. �69�

If A is not injective, the inverse A−1 defined in Eq. �69�
projects onto the orthogonal space N�A��= �g 	 �g , g̃�
=0 for all g̃�N�A��.

For compact operators A, it is well known128 that the
singular values build a sequence which at most accumulates
at zero. The instability of the inverse problem is then caused
by behavior

� 1

�n
�→ �, n → � ,

amplifying small errors when the inverse is applied in a na-
ive way. The classical approach to remedy the instability is
known as regularization.126 In terms of the spectral inverse
�Eq. �69��, we can easily understand the main idea of regu-
larization by damping of the factors 1 /�n for large n, i.e., by
replacing 1 /�n by qn which is bounded for n�N. This leads
to a modified inverse operator

R�f = �
n=1

�

qn
����f , fn�gn.

The choice

qn
��� = � 1

�n
, n � 1/�

0, otherwise
� �70�

is known as spectral cutoff. An alternative to the abrupt cut
in Eq. �70� is the Tikhonov regularization

qn
��� =

�n

� + �n
2 , n � N . �71�

Here, the parameter � is known as regularization parameter.
Boundedness of qn

��� can be easily obtained by elementary
calculation. For both cases, we have

qn
��� →

1

�n
for � → 0

for each fixed n�N. This can be used to prove �see Ref.
126� that

R�Ag → g for � → 0, �72�

i.e., in the case of exact data f =Ag, the regularized solution
converges toward the true solution when the regularization
parameter � tends to zero. This can be seen by using
�Ag , fn�= �g ,A�fn�=�n�g ,gn� and split of the sum into

R�Ag = �
n=1

�

qn
����Ag, fn�gn

= �
n=1

�

qn
����n�g,gn�gn

= �
n=1

N

¯ + �
n=N+1

�

¯ . �73�

Since qn
����n is uniformly bounded for all ��0, using the

Cauchy–Schwarz inequality, we have

� �
n=N+1

�

qn
����n�g,gn�gn�2 � �

n=N+1

�

	qn
����n	2	�g,gn�	2 → 0

for N → � . �74�

Further, since for every fixed n�N

qn
��� → 1 for � → 0,

we obtain

�
n=1

N

qn
����g,gn�gn → �

n=1

N

�g,gn�gn for � → 0. �75�

Combining Eqs. �73�–�75� we obtain Eq. �72� by arguing that
we first choose N to make the tail �n=N+1

�
¯ sufficiently small

uniformly for all � and then letting � tend to zero.
Clearly, if we do not have exact data f =Ag, but some

right-hand side f ��� polluted by numerical or measurement
error, then we cannot carry out the limit �→0. In this case
we can split the total error of the reconstruction into two
parts

If � becomes small, the reconstruction error will decrease
and tend to zero, but the data error will become large. If � is
large, then the data error is getting smaller, but the recon-
struction error increases. Somewhere for medium size �, we
obtain a minimum of the total error. Many methods for the
automatic choice of the regularization parameter have been
developed.128,129

Tikhonov regularization is a very general scheme which
can be derived not only via the spectral approach but also by
matrix algebra or by optimization for solving an ill-posed
equation Vg= f . Clearly, the equation Vg= f is equivalent to
the minimization

min
g�X

�Vg − f� , �76�

where X denotes some appropriate Hilbert space X, for ex-
ample, the space L2�D� of square integrable functions on
some domain D. The normal equations �cf. Ref. 130� for the
minimization problem are given by

015103-12 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

V�Vg = V�f .

The operator V�V does not have a bounded inverse. Stabili-
zation is reached by adding a small multiple of the identity
operator I,130 i.e., by solving

��I + V�V�g = V�f , �77�

which corresponds to adding a stabilization term ��g�2 to the
minimization �Eq. �76��, leading to the third form of the
Tikhonov regularization

min
g�X

��Vg − f�2 + ��g�2� . �78�

The operator �Eq. �77�� is usually discretized by standard
procedures and then leads to a matrix equation which can be
solved either directly or by iterative methods.130

The Moore–Penrose pseudoinverse is given by the limit
of the Tikhonov regularization for �→0, i.e., it is

V† = �V�V�−1V� = lim
�→0

��I + V�V�−1V�. �79�

However, as discussed above, this limit will lead to satisfac-
tory reconstructions only for well-posed problems. For the
above-mentioned ill-posed inverse problem for dynamic cog-
nitive modeling, we have to employ ��0.

These techniques were applied to neural pulse construc-
tion problems by Potthast and beim Graben.131,132 In particu-
lar, the authors demonstrated the feasibility of regularized
construction techniques for synaptic kernel construction.
Properties of the solutions were investigated and the ill-
posedness of the problem was proven and demonstrated by
particular examples.

The construction of synaptic weight kernels w for the
Amari equation �59� is a linear problem and can be solved by
linear methods. In Sec. III, we generalize the well-known
linear Hebb rule to neural field models described by Eq. �59�.
However, if the minimization problems �76� and �78�, re-
spectively, are more complex, also involving, besides the
kernel w, space-dependent time constants �=��x� or driving
forces p�x , t� added to the right-hand side of Eq. �59�, the
inverse problem becomes highly nonlinear and different
tools are required. Here, we briefly generalize the standard
backpropagation algorithm6,5 to neural field models.

Time-dependent recurrent backpropagation6,87,133–137

minimizes an error function for leaky integrator networks
�Eq. �58��. Its generalization aims at minimizing the error
functional

min
w
�

0

T �
D

1

2
�u�x,t� − v�x,t��2dxdt �80�

between a prescribed field v�x , t� and the w-dependent solu-
tion of the Amari equation u�x , t��w�. This problem can be
tackled using field-theoretic variational calculus for the mini-
mization problem �80� under the constraint �59� by introduc-
ing Lagrange multipliers ��x , t� and combining Eqs. �59� and
�80� into the functional

J = �
0

T �
D
�1

2
�u�x,t� − v�x,t��2 + ��x,t����x�u̇�x,t�

+ u�x� − �Wf�u���x,t���dxdt . �81�

By partial integration of the time derivative u̇ and incorpo-
rating an additional condition ��x ,T�=0 on �, we transform
Eq. �81� into

J = �
0

T �
D
�1

2
�u�x,t� − v�x,t��2 − �̇�x,t���x�u�x,t�

+ ��x,t�u�x,t� − f�u��x,t��W����x,t��dxdt

+ �
D

��x,0���x�u�x,0�dx , �82�

where we took the adjoint of W with respect to the scalar
product over D.

Since the Amari equation needs to be satisfied, the par-
tial derivative of J with respect to � should be zero at the
minimum. Thus, we are free in the choice of �, which we
choose such that the partial derivative of J with respect to u
is zero. We further remark that at time t=0, the variation in u
should vanish, i.e., the last term in Eq. �82� will not contrib-
ute to the partial derivative of u. This leads to the adjoint
equation for the backpropagated error signal �,

�̇�x,t���x� − ��x,t� = u�x,t� − v�x,t� − f��u��x,t��W����x,t�

�83�

on �0,T� with boundary condition ��x ,T�=0. Alternatively,
Eq. �83� can also be obtained from the Euler–Lagrange equa-
tions

�L
�u

−
d

dt

�L
�u̇

= 0

applied to the Lagrange density

L�x,t� = 1
2 �u�x,t� − v�x,t��2

+ ��x,t����x�u̇�x,t� + u�x� − �Wf�u���x,t��

for x�D, t� �0,T�. Equation �83� is an integrodifferential
equation for which the existence theory of Potthast and beim
Graben131 can be applied, i.e., we obtain well-defined global
solutions for every admissible choice of a kernel w for W�

and forcing terms u and v.
Backpropagation for neural fields is then obtained as a

gradient descent algorithm in function space, where J is
minimized under the constraints �59� and �83� with respect to
w and � �and possibly p�.138

III. METHOD

In this section, we first generalize the classical Hebbian
learning rule to the Amari equation using basic results from
mathematical analysis. We show that the Hebb rule is imme-

015103-13 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

diately entailed by the theory of orthonormal systems and is
thus a natural way to solve the inverse problem in dynamic
cognitive modeling.

In addition, we illustrate our previous findings by means
of three examples for basic cognitive processes. The first
example implements the push operation equation �1� in a
one-dimensional neural field. The second example imple-
ments logical inference of the equivalence relation in Table I
by means of traveling pulses with lateral inhibition in a lay-
ered neural field. Our third example presents a tree generator
processing a simple context-free grammar.

In all three examples we construct synaptic weight ker-
nels for the Amari equation by regularized Hebbian learning
such that the neural field dynamics replicate the prescribed
training patterns.

A. Tikhonov regularized Hebbian learning

Let us study the neural inverse problem in the form

��x,t� = �
D

w�x,y���y,t�dy, x � D, t � 0, �84�

where the auxiliary fields � and � are given by Eqs. �60� and
�61�, and we search for the kernel w. Given the images
��x , t� for the elements ��x , t� for all x�D, t�0 leads to the
problem that we know a bounded linear operator W and need
to construct a kernel w�x ,y� such that

�Wg��x� = �
D

w�x,y�g�y�dy, x � D �85�

for all g�X with some appropriate space X. Assume that we
know W. Then for any orthonormal basis �gn 	n�N�, we cal-
culate fn=Wgn. We define the kernel w as

w�x,y� = �
n=1

�

fn�x�gn�y� �86�

if the sum is convergent. Then we can calculate

�
D

w�x,y�g��y�dy = �
n=1

�

fn�x��
D

gn�y�g��y�dy

= �
n=1

�

fn�x��n� = f��x� .

If we know that W is an integral operator �85� with kernel w,
then we can calculate

fn�x� = �
D

w�x,y�gn�y�dy, n � N .

Further, we can develop w�x ,y� into a Fourier series with
respect to the variable y and the orthonormal basis gn. We
calculate

w�x,y� = �
n=1

�
�
D

w�x,y�gn�y�dy�gn�y� = �
n=1

�

fn�x�gn�y� . �87�

Equations �86� and �87�, respectively, provide the desired
generalization of the well-known Hebbian learning rule of

neural networks for neural fields. This learning rule was
originally suggested by Hebb139 as a psychological mecha-
nism based on physiological arguments. Here, it appears as a
basic conclusion from the Fourier theorem for orthonormal
systems. The underlying physiological idea is that a synaptic
connection between neurons at sites y and x, as expressed by
the kernel w�x ,y�, is given by the cross correlation of their
activations, reflecting the input-output pairing �, �. Appar-
ently, this is a natural consequence of the representation of
the kernel by orthonormal input patterns �.

However, training patterns are usually not orthonormal.
For a general set of training patterns that are not orthogonal,
the Hebb rule does not yield optimal kernels due to cross-
talk. Nevertheless, as far as training patterns are still linearly
independent, one can cope with cross-talk through bior-
thogonal bases, which lead, in turn, to the Moore–Penrose
pseudoinverse for finite-dimensional neural networks.6,87,104

Potthast and beim Graben132 generalized this approach to the
field-theoretic setting deploying biorthogonal bases in Hil-
bert spaces.

If, by contrast, training patterns are neither orthogonal
nor linearly independent, the inverse problem for the Amari
equation is ill-posed and solutions have to be regularized to
stably construct appropriate kernels. Thus, the more general
theory of Sec. II C 3 is required for this aim. We propose a
modified Tikhonov–Hebb rule and apply it to calculating
neural fields for different cognitive dynamics.

Consider a dynamical field defined by Eq. �54� as

v�x,t� = �
k=1

L

�k�t�vk�x�, x � D, t � �0,T� .

Introducing the auxiliary fields �, � according to Eqs. �60�
and �61�, again, leads to the integral equation

��x,t� = �
D

w�x,y���y,t�dy, x � D, t � �0,T� �88�

for the unknown kernel w�x ,y�. We discretize the time inter-
val �0,T� by Nt points and step size

ht =
T

Nt − 1
,

expressing the Euler rule

du�x,t�
dt

�
u�x,t + ht� − u�x,t�

ht
,

i.e., the nodes of the regular time grid are given by

tk = �k − 1� · ht, k = 1, . . . ,Nt. �89�

On the spatial domain D we use a discretization with Nd

points. For the one-dimensional case, we employ a regular
grid on �0,2��; for the sphere in the second example; we
chose a regular grid in polar coordinates. In both cases we
write the discretization as xj, j=1, . . . ,Nd. The time-space
discretization leads to matrices

� jk = f�u�x j,tk��, x � D, t � 0, �90�

015103-14 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

� jk = �
u�x j,tk + ht� − u�x j,tk�

ht
+ u�x j,tk�, x � D, t � 0.

�91�

Discretization of the kernel w�x ,y� is obtained by using the
above spatial grid for both x and y. We will consider the
surface element dy to be a part of the discretized kernel, i.e.,
we approximate the operator W by the matrix

W = �w�xj,y��� j,�=1,. . .,Nd
.

Then, Eq. �88� is transformed into the matrix equation

� = W�. �92�

With the Tikhonov inverse of � given as

R� = ��I + ����−1��, � � 0, �93�

we obtain the reconstructed synaptic weight kernel

W� = �R� = ���I + ����−1�� �94�

for the Tikhonov–Hebbian learning rule of the Amari equa-
tion �59�. Note that Oja’s rule for unsupervised Hebbian
learning6 can be considered as a special case of the
Tikhonov–Hebb rule by replacing the regularization con-
straint ming ��g� in Eq. �78� by ming ��1− �g��.

B. Pushdown stack

In Eq. �1� we described a stack as a list of filler symbols
F= �a ,b� occupying slots R= �r1 ,r2 ,r3� for the three list po-
sitions. We use the functional representations �35� and �36�,
thus obtaining the cognitive states

v1�x� = ���1� = sin x ,

v2�x� = ���2� = sin x + sin 2x , �95�

v3�x� = ���3� = sin x + sin 2x + sin 3x ,

as images of the symbolic path Eq. �1� in function space
where we have deliberately replaced the variable y by x since

the symbol b, represented by the function fb�x�=x, does not
occur.

Instead of describing the temporal evolution by the order
parameter �Eq. �54��, we simply use tent maps

�k�t� = �
t − �k − 1��

�
+ 1, − k� � t � − �k − 1��

−
t − �k − 1��

�
+ 1, − �k − 1�� � t � �2 − k�� ,�

�96�

where � indicates the maximum of amplitude �k�t�. For the
first example we set �=1.

Figure 8 displays the spatial patterns vk�x� given by Eq.
�95� in �a�, the time course of the amplitudes �k�t� �Eq. �96��
in �b�, and the spatiotemporal dynamics v�x , t� resulting from
Eq. �53� in �c�.

This prescribed trajectory in function space is trained via
Tikhonov–Hebbian learning by a discretized neural field
obeying the Amari equation �59� with the following param-
eters: number of spatial discretization points Nd=300, num-
ber of temporal discretization points Nt=100, time constant
�=0.5, synaptic gain �=10, and activation threshold �=0.3,
where we compare the Moore–Penrose pseudoinverse �79�
�i.e., unregularized, �=0� with Tikhonov regularization �Eq.
�93�, �=0.1� for the Hebb rule.

C. Logic gate

One of the most persistent problems in early neural net-
work research was the implementation of linearly nonsepa-
rable logical functions, such as xor or equiv �see Sec. II A 1�
by means of feed-forward architectures. These problems are
not solvable with one-layered networks at all and solving
them with the nonlinear backpropagation algorithm for two-
layered networks is computationally very expensive �cf.
Ref. 6�.

Here, we discuss a two-dimensional neural field model
where the y-dimension serves as representation space for the

FIG. 8. �Color� Test patterns used in the one-dimensional Amari model. �a� Three “cognitive states” of a pushdown automaton �cf. Sec. II B� represented by
spatial waves vk�x�=sin�kx�, with k=1 �solid�, k=2 �dashed�, and k=3 �dotted�. �b� Their respective amplitudes �k�t� as tent functions of time. �c� The
spatiotemporal training pattern v�x , t�=�k�k�t�vk�x� resulting from the separation ansatz �53� for solving the inverse problem for the Amari equation �59�.

015103-15 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

tensor product representation �Eq. �40��, whereas the
x-dimension provides a continuum of �uncountably� infinite
many layers. The inputs A and B for the equiv gate are given
by two Gaussians centered around points x1 ,x2�R. Addi-
tionally, a permanent gating input G=1 is represented by a
third Gaussian centered around x3�R. The inference dynam-
ics is prescribed by Gaussian pulses traveling along linear
paths along the x-axis through

v�x,t� = �1�t�Ae−R	x − x1�t�	2 + �2�t�Be−R	x − x2�t�	2

+ �3�t�Ge−R	x − x3�t�	2 �97�

with A ,B� �0,1�, G=1, x= �x ,y��D�R2, and xi�t�
= �0,yi�+ tdi for t�0. Here, di denotes the direction of the ith
neural pulse.

The amplitudes �i�t� obey a suitably chosen order pa-
rameter equation �53� that reflects lateral inhibition among
the three pulses. Four trajectories of neural pulses were ex-
plicitly constructed, as illustrated in Fig. 9.

When A=B=0 �Fig. 9�a��, there is no inhibition at all
and the gating pulse G travels into its destination, yielding
output C=1. For A=1, B=0 �Fig. 9�b��, input A interferes
with G around x=5, leading to extinction of G. Likewise, for
A=0, B=1 �Fig. 9�c��, B and G annihilate each other around
x=5, again. Finally, if A=B=1 �Fig. 9�d��, lateral inhibition
of A and B takes place much earlier around x=2 such that the
unaffected gating pulse G becomes the desired output C=1.

The four different fields of superimposed traveling
pulses are used as training patterns for Tikhonov–Hebbian
learning of synaptic weight kernels, as explained above. We
used a discretization of Nd=30�31 points in the spatial do-
main D and Nt=80 temporal discretization points for solving

the inverse problem. As regularization parameter we set �
=1. Simulations were carried out with Nt=160 time discreti-
zation points and �=2, �=10, and �=0.5.

D. Tree generator

Our second example is related to syntactic language pro-
cessing where context-free grammars are processed by push-
down automata. For the sake of simplicity, we describe the
process of tree generation as used in top-down parsing
approaches.13,14,37 Here we use the CFG

T = �a�, N = �S�, P = ��1� S → S S

�2� S → a
� , �98�

where a is the only terminal and the start symbol S is the
only nonterminal symbol. One particular path of a tree gen-
erator is shown in Fig. 10.

The trees depicted in Fig. 10 are functionally represented
using the following mappings:

��a� = fa�x� = 0, ��S� = fS�x� = 1 �99�

for the fillers. Note that a is treated as the “empty word”
represented by the zero function here. The tree roles are rep-
resented by spherical harmonics as outlined in Sec. IV. Using
the tensor product representation deploying Clebsch–Gordan
coefficients, again, yields static spatial patterns

FIG. 9. �Color� Training pulses for
logical equivalence function equiv
�Table I�. �a� A=0, B=0, and C=1; �b�
A=1, B=0, and C=0; �c� A=0, B=1,
and C=0; and �d� A=1, B=1, and C
=1. The gating pulse G=1 in all cases.

(a) S (b) S

S S

(c) S

S

a

S

S S

(d) S

S

a

S

S

a

S

a

FIG. 10. Example-tree generation according to grammar �98�.

015103-16 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

v1�x� = 	Y1,0�x�	, v2�x� = 	Y1,0�x� + Y1,−1�x� + Y1,1�x�	 ,
�100�

v3�x� = �Y1,0�x� + Y1,−1�x� +
1
�2

�Y2,1�x� − Y1,1�x��

+
1
�3

Y0,0�x� −
1
�2

Y1,0�x� +
1
�6

Y2,0 + Y2,2�x�� ,

which are displayed in Fig. 11.
Figure 11�a� shows the representation v1�x� of the

simple tree from Fig. 10�a� containing only the filler S bound
to the root role. Note that this is actually a pz orbital of the
electronic wave function in the hydrogen atom. Figure 11�b�
shows v2�x� as a superposition of three spherical harmonics
corresponding to Fig. 10�b�. Accordingly, Fig. 11�c� displays
the representation of the tree in Fig. 10�c� where the right
branch has been further expanded.

Finally, we chose the same tent map �Eq. �96�� �although
with different time scales: �=15� as in Sec. III B for the
amplitude dynamics. The spatiotemporal patterns resulting
from Eq. �53� are shown in Fig. 12.

Again, a discretized neural field characterized by the
Amari equation �59� is trained with the Tikhonov–Hebb rule
�Eq. �93��. Here, we use simulation parameters: number of
spatial discretization points Nd=6400, number of temporal
discretization points Nt=30, time constant �=0.5, synaptic
gain �=10, and activation threshold �=0.3.

IV. RESULTS

We next describe the results when applying the tech-
niques of Sec. II C 3 to construct synaptic weight kernels
generating the prescribed cognitive dynamics in representa-
tion space, constructed above.

A. Pushdown stack

As shown in Fig. 8�c�, the dynamics of a pushdown
stack constructed in Eqs. �95� and �96�, appears as a one-
dimensional wave field �y-axis� over time �x-axis�, realizing
continuous transitions from state v1 to state v2 and from v2 to
state v3.

After discretizing temporal and spatial dimensions in ac-
cordance to Eqs. �89�–�91�, Fig. 13 displays the mapping of
the auxiliary fields �a� � onto �b� �. This mapping is
achieved by the linear integral transformation �Eq. �92�� de-
rived from the Amari equation �59�.

We used Tikhonov–Hebbian inversion theory to con-
struct a synaptic weight kernel w by Eq. �94�. Without regu-
larization we do not expect to obtain a reasonably stable
kernel. This is demonstrated in Fig. 14�a�, where we carried
out the reconstruction with the standard Moore–Penrose
pseudoinverse �79�. Clearly, the classically reconstructed
kernel is strongly fluctuating between −104 and +104, thus
reflecting the ill-posedness of the inverse problem. On the
other hand, the regularized kernel is visualized in Fig. 14�b�.
Regularization does neither require orthogonality nor even
linear independence of training patterns. It is rather robust
against linear dependence as resulting, e.g., from oversam-
pling of discretized data. Note further, that the kernel de-
picted in Fig. 14�b� is not translation invariant. Hence we
have explicitly constructed an inhomogeneous synaptic
weight kernel from the prescribed cognitive training process.

In the final step we then solved the Amari equation nu-
merically with the reconstructed kernel. Here, it is of consid-
erable importance to use a different discretization in time in
order to avoid the inverse crime: using the same sampling for
training and simulation could spuriously yield coincident
patterns. Therefore, we doubled the temporal sampling rate
for simulation.

Simulation results are presented in Fig. 15. Image �a�
shows the field generated with the Moore–Penrose pseudo-
inverse. The field quickly explodes and moves into high-
order oscillations, which correspond to the strong amplifica-
tion of high modes excited by small numerical errors �cf. Eq.
�69��. Figure 15�b� demonstrates the reconstruction of the
prescribed field dynamics. This image has been generated
from the Tikhonov–Hebbian regularized kernel.

The results prove that stable and quick construction of
synaptic weight kernels is possible to generate prescribed
dynamics constructed from representations of cognitive
states.

FIG. 11. �Color� Spherical harmonics representation of
trees vk�x� �Eq. �100�� used in the two-dimensional
Amari model �cf. Sec. II B�. �a� Zero-level tree consist-
ing only of root node S as in Fig. 10�a�, �b� one-level
tree as in Fig. 10�b�, and �c� two-level tree as in Fig.
10�c�. �Note that trees from Figs. 10�c� and 10�d� are
mapped onto the same spherical representation�.

FIG. 12. �Color� Tree generation dy-
namics resulting from the separation
ansatz �53� for solving the inverse
problem for the Amari equation �59�.

015103-17 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

B. Logic gate

Figure 16 shows the reconstructed traveling pulse dy-
namics of the logical interference neural field. Clearly, they
are in good agreement with the prescribed training data
shown in Fig. 9.

Our results show that a hardly tractable problem for con-
nectionist neural networks becomes linearly solvable for
neural fields.

C. Tree generator

As before, Fig. 12 visualizes the prescribed cognitive
dynamics constructed in Eq. �100�. It shows a selection of
time slices for the spatiotemporal dynamics of the field rep-
resentations, sampling a realization of a continuous transition
over several states v1 , . . . ,vn. Again, we discretized both the
temporal and spatial dimensions following Eqs. �89�–�91�.

We then used Tikhonov–Hebbian inversion theory again
to construct a synaptic weight kernel w. In turn, this kernel
was used to calculate the neural field u�x , t� as a solution of
the Amari equation �59�, which is shown in Fig. 17.

The results demonstrate that stable and quick construc-
tion of synaptic weight kernels is feasible over another two-
dimensional manifold in order to replicate neural field dy-
namics in cognitive representation spaces.

V. DISCUSSION

We described dynamic cognitive modeling as a three tier
top-down approach comprising the levels of �1� cognitive
processes, �2� state space representations, and �3� neurody-
namical implementations. These levels are passed through in
a top-down manner: �1� cognitive processes are described as
algorithms sequentially operating on complex symbolic data
structures that are decomposed using filler/role bindings; �2�
data structures are mapped onto “points” in Fock spaces �ab-
stract feature spaces� using tensor product representations;
and �3� cognitive operations are implemented as dynamics of
neural respective dynamic fields as continuum approxima-
tions of neural networks. The last step involves the solution
of inverse problems, namely, training synaptic weights of the
Amari equation to reproduce prescribed paths in representa-
tion space.

FIG. 13. �Color� Auxiliary fields �a� ��x , t� and �b� ��x , t� obtained from the
training pattern v�x , t� by Eqs. �60� and �61� for parameters �=0.5, �=10,
and �=0.3.

FIG. 14. �Color� Synaptic weight ker-
nels w�x ,y� of the Amari equation
�59�. �a� For Moore–Penrose pseudo-
inverse �i.e., �=0� and �b� for
Tikhonov inverse �93� with regulariza-
tion parameter �=0.1 for parameters
�=0.5, �=10, and �=0.3.

FIG. 15. �Color� Numerical solutions u�x , t� of the Amari equation �59� with
estimated synaptic weight kernels w�x ,y� as in Fig. 14. �a� For Moore–
Penrose pseudoinverse �i.e., �=0� and �b� for Tikhonov inverse �93� with
regularization parameter �=0.1 for parameters �=0.5, �=10, and �=0.3.
Compare with Fig. 8.

015103-18 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

After recasting the Amari equation into a linear integral
equation that can principally be trained by Hebbian learning,
we demonstrated that these problems are ill-posed and solu-
tions have to be regularized. We suggested a modified
Tikhonov–Hebb learning rule and showed its stability for
particular examples of cognitive dynamics in function
spaces. Tikhonov–Hebbian learning is a quick and simple
�for being linear� training algorithm, not requiring orthogo-
nality or even linear independence of training patterns. In
fact, the regularization is robust against linearly dependent
patterns as they could result from oversampling. Regarding
neural field models with traveling pulse dynamics as layered
architectures,132 showed that Tikhonov–Hebbian learning
also works for linearly nonseparable problems such as the
persistent XOR problem for which nonlinear and computa-
tionally expensive training algorithms have to be employed
for connectionist models.

Moreover, Tikhonov–Hebbian learning generally leads,
for given training patterns, to inhomogeneous kernels, which
is a considerable progress for neural/dynamic field models of
cognitive processes. Most efforts in the field so far have been
done investigating either homogeneous kernels21,24,25,28,29 or
by introducing inhomogeneity explicitly.20,31,122,140–143

For the sake of simplicity, we represented cognitive
states as static spatial patterns in one and two dimensions by
encoding symbolic fillers as constants. Using functional rep-
resentations for fillers as well would further increase the di-
mensionality of variable domains by one. By contrast, Ref.
14 suggested a separation of time scales to represent fillers as

fast oscillations and cognitive processes as slow transients
independently. This approach, however, is not feasible using
Tikhonov–Hebbian learning for solving the inverse problem
for the Amari equation because a synaptic weight kernel,
trained on the fast time scale, would not be able to replicate
the slow cognitive dynamics and vice versa. As the neural
field is a deterministic dynamical system, the same fast cycle
would be repeated after training the first one. Nevertheless,
separation of time scales could still be possible using more
sophisticated solutions of the inverse problem involving
time-dependent input to the neural field. We outlined one
possible solution of the nonlinear inverse problem by func-
tional backpropagation for learning weight kernels, time con-
stants and possibly input forces simultaneously.

In the present state, dynamic cognitive modeling deals
with an abstract, theoretical task, namely, solving the inverse
problem of finding a neurodynamical implementation for a
given algorithmic symbol processor in a top-down fashion. It
does currently not address another inverse problem prevalent
in cognitive neuroscience, namely the bottom-up reconstruc-
tion of neurodynamics from observed physiological time se-
ries, such as electroencephalographic �EEG�,144–149 MEG,150

optical diffusion tomographic,151 or functional magnetic
resonance tomographic152 data. In particular, it is not related
to dynamic causal modeling153,154 or similar
approaches155,156 where the inverse problem of finding neural
generators from physiological data is addressed. Certainly,
dynamic causal modeling and dynamic cognitive modeling
ought to be connected at the intermediate level of neurody-

FIG. 16. �Color� Numerical solutions
u�x , t� of the Amari equation �59� for
logical equivalence function equiv
�Table I�. �a� A=0, B=0, and C=1; �b�
A=1, B=0, and C=0; �c� A=0, B=1,
and C=0; and �d� A=1, B=1, and C
=1 for parameters �=1, �=2, �=10,
and �=0.5. Compare with Fig. 9.

FIG. 17. �Color� Numerical solutions
u�x,t� of the Amari equation �59� for
tree generation dynamics. Compare
with Fig. 12.

015103-19 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

namics in the long run, one coming from the bottom level of
physiological data, the other one coming from the top level
of cognitive architecture. We leave this ambitious project for
future research.

ACKNOWLEDGMENTS

This work has been supported by an EPSCR Bridging
the Gaps grant on Cognitive Systems Sciences. Inspiring dis-
cussions with and helpful comments from Sabrina Gerth,
Whitney Tabor, Paul Smolensky, and Johannes Haack are
gratefully acknowledged. We would like to thank Tito Arec-
chi and Jürgen Kurths for their kind invitation to contribute
to this focus issue on Nonlinear Dynamics in Cognitive and
Neural Systems.

1J. A. S. Kelso, Dynamic Patterns: The Self-Organization of Brain and
Behavior �MIT Press, Cambridge, MA, 1995�.

2T. van Gelder, Behav. Brain Sci. 21, 615 �1998�.
3R. D. Beer, Trends Cogn. Sci. 4, 91 �2000�.
4P. beim Graben, Mind and Matter 2, 29 �2004�.
5Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, edited by D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group �MIT Press, Cambridge, MA, 1986�, Vol. 1.

6J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural
Computation �Perseus Books, Cambridge, MA, 1991�.

7D. Marr and T. Poggio, Massachusetts Institute of Technology Technical
Report No. AIM-357, 2003.

8Z. W. Pylyshyn, Computation and Cognition: Toward a Foundation for
Cognitive Science �MIT Press, Cambridge, MA, 1986�.

9C. P. Dolan and P. Smolensky, Connect. Sci. 1, 53 �1989�.
10P. Smolensky, Artif. Intell. 46, 159 �1990�.
11P. Smolensky and G. Legendre, The Harmonic Mind: From Neural Com-

putation to Optimality-Theoretic Grammar,�MIT Press, Cambridge, MA,
2006�, Vol. 1.

12P. Smolensky, Cogn. Sci. 30, 779 �2006�.
13P. beim Graben, S. Gerth, and S. Vasishth, Cognit. Neurodynamics 2, 229

�2008�.
14P. beim Graben, D. Pinotsis, D. Saddy, and R. Potthast, Cognit. Neurody-

namics 2, 79 �2008�.
15M. J. Spivey and R. Dale, Psychol. Learn. Motiv. 45, 87 �2004�.
16B. L. van der Waerden, Algebra �Springer, New York, 2003�, Vol. 2.
17R. Haag, Local Quantum Physics: Fields, Particles, Algebras �Springer,

Berlin, 1992�.
18S.-I. Amari, Biol. Cybern. 27, 77 �1977�.
19Lectures in Supercomputational Neuroscience: Dynamics in Complex

Brain Networks, edited by P. beim Graben, C. Zhou, M. Thiel, and J.
Kurths �Springer, Berlin, 2008�, pp. 3–48.

20P. C. Bressloff and J. D. Cowan, Physica D 173, 226 �2002�.
21S. Coombes, G. Lord, and M. Owen, Physica D 178, 219 �2003�.
22G. B. Ermentrout and J. B. McLeod, Proc. - R. Soc. Edinburgh, Sect. A:

Math 123A, 461 �1993�.
23J. S. Griffith, Bull. Math. Biophys. 25, 111 �1963�.
24A. Hutt and F. M. Atay, Physica D 203, 30 �2005�.
25V. K. Jirsa and H. Haken, Phys. Rev. Lett. 77, 960 �1996�.
26P. L. Nunez, Behav. Brain Sci. 23, 371 �2000�.
27K. A. Richardson, S. J. Schiff, and B. J. Gluckman, Phys. Rev. Lett. 94,

028103 �2005�.
28P. A. Robinson, C. J. Rennie, and J. J. Wright, Phys. Rev. E 56, 826

�1997�.
29N. Venkov, S. Coombes, and P. Matthews, Physica D 232, 1 �2007�.
30H. R. Wilson and J. D. Cowan, Kybernetik 13, 55 �1973�.
31J. J. Wright, C. J. Rennie, G. J. Lees, P. A. Robinson, P. D. Bourke, C. L.

Chapman, E. Gordon, and D. L. Rowe, Neuropsychopharmacology 28,
S80 �2003�.

32W. Erlhagen and G. Schöner, Psychol. Rev. 109, 545 �2002�.
33G. Schöner and E. Thelen, Psychol. Rev. 113, 273 �2006�.
34E. Thelen, G. Schöner, C. Scheier, and L. B. Smith, Behav. Brain Sci. 24,

1 �2001�.
35A. Newell and H. A. Simon, Commun. ACM 19, 113 �1976�.
36J. Fodor and Z. W. Pylyshyn, Cognition 28, 3 �1988�.

37J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation �Addison-Wesley, Menlo Park, California,
1979�.

38J. R. Anderson, Cognitive Psychology and its Implications �W. H. Free-
man, New York, NY, 1995�.

39R. L. Lewis, Encyclopedia of Cognitive Science �Macmi llan, London,
2003�.

40A. K. Joshi and Y. Schabes, in Handbook of Formal Languages and Au-
tomata, edited by A. Salomma and G. Rosenberg �Springer, Berlin, 1997�,
Vol. 3, pp. 69–124.

41E. P. Stabler, in Logical Aspects of Comutational Linguistics, edited by C.
Retoré �Springer, New York, 1997�, pp. 68–95.

42J. Michaelis and C. Wartena, in Constraints and Resources in Natural
Language Syntax and Semantics, edited by G. Bouma, G.-J. Kruijff, E.
Hinrichs, and R. T. Oehrle �CSLI, Stanford, CA, 1999�, pp. 263–279.

43E. P. Stabler, Cogn. Sci. 28, 699 �2004�.
44J. Michaelis, in Logical Aspects of Computational Linguistics, edited by

M. Moortgat �Springer, Berlin, 2001�, pp. 179–198.
45H. T. Siegelmann, Theor. Comput. Sci. 168, 461 �1996�.
46C. Moore, Phys. Rev. Lett. 64, 2354 �1990�.
47C. Moore, Nonlinearity 4, 199 �1991�.
48R. Badii and A. Politi, Complexity: Hierarchical Structures and Scaling in

Physics �Cambridge University Press, Cambridge, 1997�.
49E. Mizraji, Bull. Math. Biol. 51, 195 �1989�.
50E. Mizraji, Fuzzy Sets Syst. 50, 179 �1992�.
51H. T. Siegelmann and E. D. Sontag, J. Comput. Syst. Sci. 50, 132 �1995�.
52W. Tabor, Technical Report No. TR98-1694, 1998.
53W. Tabor, Expert Sys. 17, 41 �2000�.
54W. Tabor, University of Connecticut Report, 2002.
55J. B. Pollack, Mach. Learn. 7, 227 �1991�.
56C. Moore, Theor. Comput. Sci. 201, 99 �1998�.
57C. Moore and J. P. Crutchfield, Theor. Comput. Sci. 237, 275 �2000�.
58P. beim Graben, B. Jurish, D. Saddy, and S. Frisch, Int. J. Bifurcation

Chaos Appl. Sci. Eng. 14, 599 �2004�.
59P. beim Graben, in Advances in Cognitive Neurodynamics, Proceedings of

the International Conference on Cognitive Neurodynamics, ICCN 2007,
edited by R. Wang, F. Gu, and E. Shen �Springer, Berlin, 2008�, pp. 469–
473.

60P. Cvitanović, G. H. Gunaratne, and I. Procaccia, Phys. Rev. A 38, 1503
�1988�.

61M. B. Kennel and M. Buhl, Phys. Rev. Lett. 91, 084102 �2003�.
62A. Maye and M. Werning, Neurocomputing 58–60, 941 �2004�.
63M. Werning, Synthese 146, 203 �2005�.
64A. Maye and M. Werning, Chaos Complexity Lett. 2, 315 �2007�.
65M. Werning and A. Maye, Chaos Complexity Lett. 2, 435 �2007�.
66A. R. Edmonds, Angular Momentum in Quantum Mechanics �Princeton

University Press, New Jersey, 1957�.
67D. Gernert, BioSystems 54, 165 �2000�.
68H. Atmanspacher and T. Filk, BioSystems 85, 84 �2006�.
69P. beim Graben, Mind and Matter 4, 169 �2006�.
70H. Haken, Synergetics: An Introduction �Springer, Berlin, 1983�.
71V. S. Afraimovich, V. P. Zhigulin, and M. I. Rabinovich, Chaos 14, 1123

�2004�.
72M. I. Rabinovich, R. Huerta, P. Varona, and V. S. Afraimovich, PLOS

Comput. Biol. 4, e1000072 �2008�.
73M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. D. I. Abarbanel,

and G. Laurent, Phys. Rev. Lett. 87, 068102 �2001�.
74R. Huerta and M. Rabinovich, Phys. Rev. Lett. 93, 238104 �2004�.
75P. Smolensky, Behav. Brain Sci. 11, 1 �1988�.
76R. Dale and M. J. Spivey, J. Exp. Theor. Artif. Intell. 17, 317 �2005�.
77P. beim Graben and H. Atmanspacher, Found. Phys. 36, 291 �2006�.
78M. J. Spivey and S. E. Anderson, J. Exp. Theor. Artif. Intell. 20, 239

�2008�.
79P. Smolensky, in Meaning in Mind: Fodor and His Critics, edited by B.

Loewer and G. Rey �Blackwell, Oxford, 1991�, pp. 201–227.
80J. Fodor and B. P. McLaughlin, Cognition 35, 183 �1990�.
81D. J. Chalmers, in Proceedings of the 12th Annual Conference on Cogni-

tive Science Society, 1990 �unpublished�, pp. 340–347.
82J. Fodor, Cognition 62, 109 �1997�.
83A. Prince and P. Smolensky, Science 275, 1604 �1997�.
84R. B. Stein, K. V. Leung, D. Mangeron, and M. N. Oğuztöreli, Kybernetik

15, 1 �1974�.
85H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1 �1972�.
86A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys.

Rep. 469, 93 �2008�.

015103-20 P. beim Graben and R. Potthast Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1016/S0167-2789(02)00677-2
http://dx.doi.org/10.1016/S0167-2789(03)00002-2
http://dx.doi.org/10.1016/j.physd.2005.03.002
http://dx.doi.org/10.1103/PhysRevLett.77.960
http://dx.doi.org/10.1017/S0140525X00003253
http://dx.doi.org/10.1103/PhysRevLett.94.028103
http://dx.doi.org/10.1103/PhysRevE.56.826
http://dx.doi.org/10.1016/j.physd.2007.04.011
http://dx.doi.org/10.1007/BF00288786
http://dx.doi.org/10.1017/S0140525X01003910
http://dx.doi.org/10.1145/360018.360022
http://dx.doi.org/10.1016/0010-0277(88)90031-5
http://dx.doi.org/10.1103/PhysRevLett.64.2354
http://dx.doi.org/10.1016/S0092-8240(89)80067-9
http://dx.doi.org/10.1016/S0304-3975(97)00028-5
http://dx.doi.org/10.1016/S0304-3975(98)00191-1
http://dx.doi.org/10.1103/PhysRevA.38.1503
http://dx.doi.org/10.1103/PhysRevLett.91.084102
http://dx.doi.org/10.1063/1.1819625
http://dx.doi.org/10.1103/PhysRevLett.87.068102
http://dx.doi.org/10.1103/PhysRevLett.93.238104
http://dx.doi.org/10.1080/09528130500283766
http://dx.doi.org/10.1007/s10701-005-9013-0
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002

87Lectures in Supercomputational Neuroscience: Dynamics in Complex
Brain Networks, edited by P. beim Graben, C. Zhou, M. Thiel, and J.
Kurths �Springer, Berlin, 2008�, pp. 195–223.

88P. beim Graben and J. Kurths, Neurocomputing 71, 999 �2008�.
89Neurocomputing: Foundations of Research, edited by J. A. Anderson and

E. Rosenfeld �MIT Press, Cambridge, MA, 1988�, Vol. 1.
90Neurocomputing: Directions for Research, edited by J. A. Anderson, A.

Pellionisz, and E. Rosenfeld �MIT Press, Cambridge, MA, 1990�, Vol. 2.
91P. S. Churchland and T. J. Sejnowski, The Computational Brain �MIT

Press, Cambridge, MA, 1994�.
92The Handbook of Brain Theory and Neural Networks, edited by M. A.

Arbib �MIT Press, Cambridge, MA, 1998�.
93C.-H. Chen and V. Honavar, IEEE Trans. Neural Netw. 10, 1239 �1999�.
94W. Tabor, IEEE Trans. Neural Netw. 14, 444 �2003�.
95J. L. Elman, in Mind as Motion: Explorations in the Dynamics of Cogni-

tion, edited by R. F. Port and T. van Gelder �MIT Press, Cambridge, MA,
1995�, pp. 195–223.

96W. Tabor, C. Juliano, and M. K. Tanenhaus, Lang. Cognit. Processes 12,
211 �1997�.

97W. Tabor and M. K. Tanenhaus, Cogn. Sci. 23, 491 �1999�.
98S. Lawrence, C. L. Giles, and S. Fong, IEEE Trans. Knowl. Data Eng. 12,

126 �2000�.
99I. Farkas and M. W. Crocker, Neurocomputing 71, 1172 �2008�.
100A. H. Kawamoto, J. Mem. Lang. 32, 474 �1993�.
101J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 �1982�.
102P. Smolensky, in Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, edited by D. E. Rumelhart, J. L. McClel-
land, and the PDP Research Group �MIT Press, Cambridge, MA, 1986�,
Vol. 1, pp. 194–281.

103H. Haken, Synergetic Computers and Cognition: A Top-Down Approach
to Neural Nets �Springer, Berlin, 1991�.

104H. Haken, Principles of Brain Functioning �Springer, Berlin, 1996�.
105T. Vosse and G. Kempen, Cognition 75, 105 �2000�.
106C. Balkenius and P. Gärdenfors, in Principles of Knowledge Representa-

tion and Reasoning, edited by J. A. Allan, R. Fikes, and E. Sandewall
�Morgan Kaufmann, San Mateo, CA, 1991�, pp. 32–39.

107P. Gärdenfors, Foundations of Computation, edited by J. v. Eijck and A.
Visser �MIT-Press, Cambridge, MA, 1994�, pp. 49–77.

108R. Blutner, Synthese 141 �2004�.
109E. Mizraji and J. Lin, Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 155

�2001�.
110 M. H. Christiansen and N. Chater, Cogn. Sci. 23, 417 �1999�.
111 S.-I. Amari, Kybernetik 14, 201 �1974�.
112 R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
113 L. Zemanová, C. Zhou, and J. Kurths, Physica D 224, 202 �2006�.
114 C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths, Phys.

Rev. Lett. 97, 238103 �2006�.
115 M. Kaiser and C. C. Hilgetag, Neurocomputing 58–60, 297 �2004�.
116 O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Trends Cogn.

Sci. 8, 418 �2004�.
117 W. Maass, T. Natschläger, and H. Markram, Neural Comput. 14, 2531

�2002�.
118 V. K. Jirsa and H. Haken, Physica D 99, 503 �1997�.
119 V. K. Jirsa, A. Fuchs, and J. A. S. Kelso, Neural Comput. 10, 2019

�1998�.
120P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C.

Wiener, Philos. Trans. R. Soc. London, Ser. B 356, 299 �2001�.

121P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C.
Wiener, Neural Comput. 14, 473 �2002�.

122P. C. Bressloff, Phys. Rev. Lett. 89, 088101 �2002�.
123P. C. Bressloff and J. D. Cowan, J. Physiol. �Paris� 97, 221 �2003�.
124P. C. Bressloff, Biol. Cybern. 93, 256 �2005�.
125A. M. Oster and P. C. Bressloff, Bull. Math. Biol. 68, 73 �2006�.
126R. Kress, Linear Integral Equations �Springer-Verlag, Berlin, 1989�.
127D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering

Theory �Springer-Verlag, Berlin, 1998�.
128H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Prob-

lems �Kluwer Academic, Dordrecht, 1996�.
129A. Neumaier, SIAM Rev. 40, 636 �1998�.
130R. Kress, Numerical Analysis, Graduate Texts in Mathematics �Springer-

Verlag, New York, 1999�.
131R. Potthast and P. beim Graben, “Existence and properties of solutions for

neural field equations,” Math. Models Meth. Appl. Sci. �to be published�.
132R. Potthast and P. beim Graben, “Inverse problems in neural field theory,”

SIAM J. Appl. Dyn. Syst. �unpublished�.
133H. Bersini, M. Saerens, and L. G. Sotelino, IEEE Trans. Neural Netw. 5,

945 �1994�.
134B. A. Pearlmutter, Neural Comput. 1, 263 �1989�.
135B. A. Pearlmutter, IEEE Trans. Neural Netw. 6, 1212 �1995�.
136L. G. Sotelino, M. Saerens, and H. Bersini, Neural Netw. 7, 767 �1994�.
137G.-Z. Sun, H.-H. Chen, and Y.-C. Le, Proceedings International Joint

Conference on Neural Networks �IJCNN 91�, 1991 �unpublished�, Vol. 2,
pp. 13–18.

138C. Igel, W. Erlhagen, and D. Jancke, Neurocomputing 36, 225 �2001�.
139D. O. Hebb, The Organization of Behavior �Wiley, New York, NY, 1949�.
140M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, and

P. A. Robinson, Cereb. Cortex 16, 1296 �2006�.
141Z. P. Kilpatrick, S. E. Folias, and P. C. Bressloff, SIAM J. Appl. Dyn.

Syst. 7, 161 �2008�.
142V. K. Jirsa and J. A. S. Kelso, Phys. Rev. E 62, 8462 �2000�.
143C. J. Rennie, P. A. Robinson, and J. J. Wright, Biol. Cybern. 86, 457

�2002�.
144D. Lehmann, Electroencephalogr. Clin. Neurophysiol. 31, 439 �1971�.
145D. Lehmann, H. Ozaki, and I. Pal, Electroencephalogr. Clin. Neuro-

physiol. 67, 271 �1987�.
146R. Friedrich, A. Fuchs, and H. Haken, in Rhythms in Physiological Sys-

tems, edited by H. Haken and H. P. Koepchen �Springer, Berlin, 1991�,
pp. 315–338.

147C. Allefeld and J. Kurths, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14,
417 �2004�.

148M. Paluš, I. Dvořák, and I. David, Physica A 185, 433 �1992�.
149P. beim Graben, S. Frisch, A. Fink, D. Saddy, and J. Kurths, Phys. Rev. E

72, 051916 �2005�.
150V. K. Jirsa, R. Friedrich, and H. Haken, Physica D 89, 100 �1995�.
151H. Obrig and A. Villringer, J. Cereb. Blood Flow Metab. 23, 1 �2003�.
152K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, and R.

Turner, Neuroimage 7, 30 �1998�.
153O. David and K. J. Friston, Neuroimage 20, 1743 �2003�.
154O. David, S. J. Kiebel, L. Harrison, J. Mattout, J. Kilner, and K. J.

Friston, Neuroimage 30, 1255 �2006�.
155A. Galka, O. Yamashita, T. Ozaki, R. Biscay, and P. Valdeś-Sosa, Neu-

roimage 23, 435 �2004�.
156A. Galka, T. Ozaki, H. Muhle, U. Stephani, and M. Siniatchkin, Cognit.

Neurodynamics 2, 101 �2008�.

015103-21 Inverse dynamic cognitive modeling Chaos 19, 015103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1109/72.788663
http://dx.doi.org/10.1109/69.842255
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1016/j.physd.2006.09.008
http://dx.doi.org/10.1103/PhysRevLett.97.238103
http://dx.doi.org/10.1103/PhysRevLett.97.238103
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1016/j.tics.2004.07.008
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1016/S0167-2789(96)00166-2
http://dx.doi.org/10.1162/089976698300016954
http://dx.doi.org/10.1098/rstb.2000.0769
http://dx.doi.org/10.1162/089976602317250861
http://dx.doi.org/10.1103/PhysRevLett.89.088101
http://dx.doi.org/10.1007/s00422-005-0002-3
http://dx.doi.org/10.1137/S0036144597321909
http://dx.doi.org/10.1109/72.410363
http://dx.doi.org/10.1137/070699214
http://dx.doi.org/10.1137/070699214
http://dx.doi.org/10.1103/PhysRevE.62.8462
http://dx.doi.org/10.1007/s00422-002-0310-9
http://dx.doi.org/10.1142/S0218127404009521
http://dx.doi.org/10.1103/PhysRevE.72.051916
http://dx.doi.org/10.1016/0167-2789(95)00226-X
http://dx.doi.org/10.1097/00004647-200301000-00001

