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Abstract

The emergence of mental states from neural states by partitioning the neural phase
space is analyzed in terms of symbolic dynamics. Well-defined mental states provide
contexts inducing a criterion of structural stability for the neurodynamics that can be
implemented by particular partitions. This leads to distinguished subshifts of finite
type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically
stable fixed points or limit tori whereas irreducible shifts are obtained from generat-
ing partitions of mixing hyperbolic systems. These stability criteria are applied to the
discussion of neural correlates of consiousness, to the definition of macroscopic neu-
ral states, and to aspects of the symbol grounding problem. In particular, it is shown
that compatible mental descriptions, topologically equivalent to the neurodynamical
description, emerge if the partition of the neural phase space is generating. If this is
not the case, mental descriptions are incompatible or complementary. Consequences
of this result for an integration or unification of cognitive science or psychology, re-
spectively, will be indicated.

1. Interlevel Relations

Knowledge of well-defined relations among different levels of descriptions of physical and
other systems is inevitable if one wants to understand how (elements of) different descrip-
tions depend on each other, give rise to each other, or even imply each other. The most
ambitious program in this regard is physical reduction in the sense that higher-level de-
scriptions of features of a system are determined by the description of features at the most
fundamental level of physical theory, no matter how remote the higher level is from that
most fundamental level. This program assumes that the description of all features which
are not included at the fundamental level can be constructed or derived from this level with-
out additional input.
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However, already physical examples pose serious difficulties for this program. It has re-
cently been proposed that the conceptohtextual emergend@dtmanspacher and Bishop,
this issue; Bishop and Atmanspacher 2006) addresses such situations more properly. Con-
textual emergence is characterized by the fact that lower-level descriptions provide neces-
sary, but not sufficient conditions for higher-level descriptions. (Note that such a relation
between descriptive levels does not necessarily entail the same relation between ontological
levels.) The presence of necessary conditions indicates that lower-level descriptions pro-
vide a basis for higher-level descriptions, while the absence of sufficient conditions means
that higher-level features are neither logical consequences of lower-level descriptions nor
can they be rigorously derived from them alone. Hence, a full-blown reductive program is
inapplicable in these cases. Sufficient conditions for a rigorous derivation of higher-level
features can be introduced through specifying contexts reflecting the particular kinds of
contingency in a given situation.

A key ingredient of this procedure is the definition of some typestability condition
(e.g., the KMS condition, due to Kubo, Martin, and Schwinger) based on considerations re-
quired to establish the framework of a higher-level description (e.g., thermal equilibrium).
This condition is often implemented as a reference state with respect to which an asymp-
totic expansion is singular in the lower-level state space. Its regularization defines a novel,
contextual topology in which novel, emergent features can be rigorously introduced. There
is, thus, a mathematically well-defined procedure for deriving higher-level features given
the lower level description plus the contingent contextual conditions.

Contextual emergence and the associated identification of appropriate stability condi-
tions may have applications in other domains such as biology and psychology, and, ulti-
mately, in the relationship between the physical and the mental. In this contribution we will
address a situation which is particularly difficult because it exceeds the domain of material
systems: relations between brain and consciousness. We will discuss the contextual emer-
gence of mental states and related features (psychology, cognitive science) from brain states
and related features (neuroscience). Using Harnad’s (1990) terms, this refers to the question
of how mental symbols and cognitive computation can be grounded in neurodynamics.

More specifically, mental representations will be considered as novel features at the
(higher) level of cognition, which have necessary but not sufficient conditions at the (lower)
level of neuronal assemblies. In order to identify contexts providing such sufficient con-
ditions, those among the many possible cognitive features that might be relevant or inter-
esting as emergent features must first be identified. Assuming that stability criteria play a
role analogous to physical examples, techniques of modeling assemblies in terms of gener-
alized potentials with particular stability properties and corresponding relaxation times or
escape times suggest themselves. This can be implemented for powerful modeling tools
such as neural networks (Anderson and Rosenfeld 1989) or coupled map lattices (Kaneko
and Tsuda 2000).

Other interlevel relations in addition to contextual emergence are strong reduction, rad-
ical emergence, and supervenience (cf. Atmanspacher and Bishop, this issue). While we
do not think that strong reduction or radical emergence provide clarifying insight for the
relation between brain and consciousness, some comments about supervenience are ap-
propriate here. The notion of supervenience characterizes situations in which lower-level
descriptions contain sufficient but not necessary conditions for higher-level descriptions.
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This scenario has been employed for brain-consciousness relations in the sense that a con-
scious state with a particular phenomenal content can be multiply realized at the neural
level (Kim 1992, 1993). For instance, Chalmers (2000) defines neural correlates of con-
sciousness (NCCs) as neural systems that are correlated with conscious mental states and
are minimally sufficient for the occurence of those states.

In this definition, the notion of sufficiency rather than necessity takes into account that
different neural states can be correlated with the same conscious state (multiple realiza-
tion). Our notion of contextual emergence addresses the different question of how neural
states are related to conscious states in each individual neural realization. Contextual emer-
gence does not address the distinction between many-to-one and one-to-one relations but
tries to elucidate principles which allow us to understand the relationship between mental
and neural states itself, even in individual instantiations, in a more profound manner. In
this way, supervenience and contextual emergence complement rather than contradict each
other. Applying both concepts together may, thus, improve our insight into the nature of
mind-brain relations.

2. Structural Stability in Symbolic Dynamics

The issue of stability plays a prominent role in statistical mechanics. ldgalg(1974) have
shown that Gibbs' thermal equilibrium states are uniquely characterized by three stability
conditions upon state functionals: (i) stationarity, i.e., expectation values of observables
do not change in time; (ii) structural stability, i.e., stability of the dynamics against per-
turbations; and (iii) “asymptotic abelianness”, i.e., temporally distant observables become
eventually compatible (see Bratteli and Robinson 1997). From these presuppositions, Haag
et al. (1974) derived the KMS condition for thermal equilibrium states. In the following we
will establish related stability criteria for symbolic dynamics.

Consider a classical time-discrete, invertible dynamical systén®) given by a com-
pact Hausdorff space as its phase spgand a mapb : X — X. The flow of the system is
generated by the time iterat®$, t € Z, i.e.,t — ®' is a one-parameter group for the dynam-
ics. Then, the function space of complex-valued continuous functionsXyer = C(X),
yields a C-algebra of classical observables for that dynamical system.

The states of such a*@ynamical system are linear, positive, normalized functionals
p: 2 — C. For classical dynamical systems they correspond to probability meaggires
over the phase spa¢g such thaip(f) = [y f(x)dpp(x) for f € C(X). While pure states
can be identified with single points in phase space X, non-pure states are statistical
states given by measurgs that are not concentrated on a single point.

In its simplest sense, the stability of a dynamical system refers to the stability of a
pointx* € X under the flowd!: x* = d(x*), i.e.,x* is a fixed-point attractor. Limit cycles
or higher-order tori as attractors can be related to fixed points by the technique of Poincaré
sections. In general, attractors are invariant 8etsX, such thatb(A)C A andd)*l(A) CA.
This invariance property o extends to probability measurgsaccording tou(®1(A)) =
H(A)which are calledstationaryor invariant measures. Likewise, a statistical stpfeover
the algebra of continuous functions assigned to the megshess the invariance property.
The invariance of thermal equilibrium states is the first postulate by téaad) (1974).
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Structural stability refers to perturbations in the function space of the flow dhap
The system X, ®) is calledstructurally stableif there is a neighborhooé\ of ® such
that allW € A are topologically equivalent witkb.! As Haaget al. (1974) pointed out, the
concept of structural stability is closely related to that of ergodicity. An invariant probability
measurau is said to beergodicunder the flow®d if an invariant setA, has either measure
zero or onep(A) € {0,1}. If pis non-ergodic, there is an invariant getvith 0 < p(A) < 1
corresponding to an accidental degeneracy. Such degeneracies are not stable under small
perturbations. Hence, non-ergodic systems are in general not structurally stablegiHaag
al. 1974).

Thermal equilibrium states are given by invariant, ergodic measuresxavé&eyond
fixed points and limit tori, more complicated attractors are mixing in addition. Mixing refers
to the loss of temporal correlations among the observables of a dynamical system. Formally,
a measure is calledmixing if [U(AN®~Y(B)) — u(A)u(B)|ti°°> 0 for all measurable sets
A,B (Luzzatto 2006). This property can be rephrased by the correlation of observables
f,ge Aattimet: G(f,g) = |pu(f-go®") —pu(f)-pu(g)| wherepy is the statistical state
assigned to the measure If G(Xa,Xs) =% 0 for characteristic functionga, xs of the
setsA,B C X, pis mixing (Luzzatto 2006). Interestingly, Haag al. (1974) derived this
loss of correlations from a more fundamental, purely algebraic stability property called
“asymptotic abelianness” (Bratteli and Robinson 1997). The mixing property of a state
p follows from the asymptotic abelianness of the algebra under the assumptiop that
relatively pure i.e.,p cannot be decomposed into a convex sum of invariant stptesght
be decomposable into non-invariant states, however). Relatively pure states have sharp
expectation values and correspond, therefore, to thermodynamic macrostates (Shalizi and
Moore preprint).

Stationarity (invariance), structural stability (ergodicity) and asymptotic abelianness
(mixing) are important for the investigation of nonlinear dynamical systems. Many rigor-
ous results are known fdryperbolic systemwhere either the whole phase space possesses
a hyperbolic structure (Anosov diffeomorphisms) or there is a hyperbolic attractor. Anosov
diffeomorphisms are known to be structurally stable (Robinson 1999), and systems with
hyperbolic attractors have invariant, ergodic and mixing probability measures due to a the-
orem by Sinai, Ruelle and Bowen (Ruelle 1968, 1989). For non-hyperbolic systems, much
less is known (cf. Vianat al. 2003).

Now let us introduce the notion aépistemicobservables. For this purpose, consider
a piecewise constant functiohover the phase spacé Such a function is generally not
overall continuous and does therefore not belong to theal@ebra = C(X) of observ-
ables. Instead, it belongs to the larger-\algebra of [i-essentially bounded epistemic
observable&™ (X, [1) that are contextually defined by a reference probability measore ~

1Two maps®, W are calledtopologically equivalentor conjugated if there is a homeomorphisin such
thatho®d =Woh.

2The relationship between*cand W -algebras can be illustrated in the following way. Regarding‘a C
algebra2l as a complex vector space one can construct theftiaf linear functionals containing the states
over®l. This is again a vector space that becomes a Hilbert space in the GNS construction and h&*a.dual
The original C-algebrall can be canonically embeddeddfi* by a(p) = p(a) wherep € 21*, the right-hand
sidea € 2, and the left-hand sida € 2**. Hence2(** inherits the properties dfl (including the C-property).
The fact that it has a Hilbert space as its predual turns it into*adlfgebra. The bidual** is generally much
larger thar®( and contains the epistemic observables.
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the phase spac¥ used for a Gel'fand-Naimark-Segal (GNS) construction (Primas 1998,
Atmanspacher and Bishop, this issue). Two statgs= X are calledepistemically equiva-
lent with respect to if f(x) = f(y) (beim Graben and Atmanspacher 2006). Epistemically
equivalent states are not distinguishable by means of the obserfalblee classes of epis-
temically equivalent states partition the phase spad@eto disjoint setsA;.

A finite partition of X, ? = {Ali <1}, ANA; =0 (i # j), Ui/A = X, also called
a coarse-graining yields a symbolic dynamics (Lind and Marcus 1995) of the system
(X,®) in the following way: Taking the finite index set of the partition as an alpha-
bet A of cardinality I, one assigns to each initial conditiog € X a bi-infinite sequence
S=...& ,8,.&,a,... of symbolsa, € A according to the ruleg — s, if ®'(xg) € A,
t € Z (the dot indicates the origin of the time scale). This mapgErgT (%) is continuous
in the topology of the space of sequenges AZ. Accordingly, the first iterate; = ®(x)
of xp is mapped onto the sequense=...a ,a,&,.a,.... Therefore, the sequenekis
obtained by shifting all symbols af one place to the left.

A symbolic dynamical system is given {¥,0) wherea(s) =<' is the left-shift. Since
the dynamics orx is trivially represented by the shitt, all important information is now
encoded in the structure of the symbolic sequersceBherefore, symbolic dynamics deals
with syntax and pattern analysis (Lind and Marcus 1995, Keller and Wittfeld 2004, Steuer
et al. 2004, Steueet al. 2001).

The system$X, ®) and(Z,0) are related to each other by

Mo® = goT, (1)

which can be represented diagrammatically as:

X d(x)
Tt Tt
s —9% . o(s)

wherert: X — ¥ acts as amtertwiner. If Ttis continuous and invertible and its inverse?!

is also continuous, the mag@sando are topologically equivalent. In this case the partition

P is calledgenerating For generating partitionsthe correspondence between the phase
space and the symbolic representation is one-to-one: each point in phase space is uniquely
represented by a bi-infinite symbolic sequence wiod versa Additionally, all topological
information is preserved.

Generating partitions are generally hard to find. However, it is known that hyper-
bolic systems possess generating partitions for which the resulting symbolic dynamics
is a Markov chain (Sinai 1968a,b, Bowen 1970). The partitions that achieve this are
so-called Markov partitions. The symbolic dynamics obtained from a Markov parti-
tion is a shift of finite type This can be seen by defining dnx | stochastic matrix
Pj = WP L(A)NA))/U(A) (Froyland 2001), wherg is a probability measure. The asso-
ciated transition matrixi; = sgn(R;) provides a subs&it C X of admissible sequences.
The sequence=...a; ,a,.,&;,-.. belongs taxr if Ty 5, , = 1 (i.e., the transition from
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g, to g, is allowed). The left-shift restricted tar yields then a subshift of finite type
(ZT7G|ZT)'

Assume that a coarse-grained description of a dynamical systefh) is such a shift of
finite type(Zt,0]s, ). Then we can distinguish two important cases. In the first case, either
the matrixT itself or some poweT' (I > 1) of T is diagonal. IfT is diagonal, the cellg\
of the partition® are invariant sets under the flod. That is, the partition is coarse enough
to capture the asymptotically stable fixed points and limit tori together with their basins
of attraction of a multistable dynamical system. Such systems are structurally stable unless
they give rise to bifurcations. If thieth power ofT is diagonal, the admissible sequences of
the symbolic dynamics are periodic afids calledcyclic. This means that the boundaries of
the partition are transversally intersected by a limit torus, which is asymptotically stable as
well. The space of symbolic sequenggsfor these systems can be equipped with invariant,
ergodic measures by taking Dirac measures for the periodic sequences.

The second important case refers toigaducible transition matrixT, i.e. there is a
numberl such thatT' is positive. Then the corresponding shift of finite typEr,ols; )
is an ergodic and mixing Markov chain where the eigenvegbto eigenvalue one of
the stochastic matri corresponds to a unigue invariant, ergodic measure that is mixing
in addition to the first case above (Ruelle 1968, 1989). A well-elaborated theory relates
these measures to KMS states in algebraic quantum statistics (Olesen and Petersen 1978,
Bratteli and Robinson 1997, Pinzaxi al. 2000, Exel 2004), at least for structurally stable
hyperbolic systems. Such systems have Markov partitions enabling the construction of
thermal equilibrium KMS states (under certain conditions) which are also structurally stable
(Robinson 1999). Furthermore, Markov partitions are generating and, thereby, admit a
symbolic dynamics that is topologically equivalent to the underlying phase space dynamics.

To conclude, subshifts of finite typ&r,0ls,), characterized by ahx | transition
matrix T, are structurally stable iT is either cyclic (i.e. there is ah> 1 such thatT'
is diagonal) or ifT is irreducible. In both cases, the existence of invariant and ergodic
measures ensure stability conditions as required for the contextual emergence of epistemic
observables and associated states in a partitioned phase space.

3. Contextual Emergence of Mental States
from Neural States

Let us now consider a neurodynamical systlm- (X, ®) with phase spacX described

by neural observablef : X — R (e.g. spike rates or action potentials or somato-dendritic
membrane potentials of neurons) such thatX is a point or, likewise, aactivation vector

of a neural population given by the valuég(x))i<n € R" for n degrees of freedom. In the
following subsections we address three different ways of introducing epistemic observables
on such a phase space. The structural stability of their associated symbolic dynamics, which
is of key significance for contextual emergence, will be emphasized in particular.

3.1. Neural Correlatesof Consciousness

There is a great variety of conscious mental states formingpatal state space.YMental
states range from coarsest-grained (“just being conscious”) to finer-grained states such as
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wakefulness versus sleep, dreaming, hypnosis, attentiveness Faten more refined are
states of consciousness associated with spagifenomenal conteriChalmers 2000).

Itis generally assumed that some neural sysiewith phase spack is correlated with
particular mental statgS € Y. They can be related to epistemic observalpleX — {0,1},
wherep(x) =1 if the activation vectox is actually correlated with the mental staie A
phenomenal family? = {C;,...C;} is a Boolean classification of pairwise disjoint states
that cover the whole mental state spatc€Chalmers 2000). In other word®, provides a
partition of the mental state spa¥ento | state<C;. The whole mental state space can then
be represented by a system of such partitions of different coarse grainings: At the lowest
level there is a binary partition defining mental states of “being conscious” and “not being
conscious”. At subsequent levels, there are more refined partitions defining, for instance,
states of “wakefulness”, “sleep”, and altered states (e.g. hypnosis), again covering the entire
mental state spacé

According to Chalmers (2000), a neural correlate of consciousness (NCC) can be char-
acterized by a minimal sufficient neural subsystiinthat is correlated with a conscious
stateC € Y. This characterization refers to the interlevel relation of supervenience. The
sufficiency ofN means that the activity dfl implies being in conscious state

From the point of view of this contribution, however, it is also appropriate to look
for necessary conditions for a neural subsystémvhose activation is correlated with the
conscious stat€ in the sense of contextual emergence. Being in a conscioussiatglies
then the activity ofN, so that this activity is a necessary condition r

Suppose thal is an NCC for a conscious sta& € P with multiple realizations by
different activation patterns dfl. Then different neural stateg,y € X, are sufficient for
the conscious stat€;. Sincep;(x) = pi(y), x andy are epistemically indistinguishable
from one another and, hence, epistemically equivalent with respect to the obsepyable
corresponding to the mental staee P. In this sense, the partitio®® of the mental state
spaceY induces a partitiorQ = {Aq,...A'} of the neural state spack into classes of
epistemically equivalent neural states. Labeling the o&llsf Q by symbolsa; of a finite
alphabetA, we obtain a symbolic representation of the mental states, emerging from the
neural state space by the mappmg? — A, 11(C) = &. The dynamics of states in A
is a discrete sequence of symbols as a function of time, establishing a symbolic dynamics.
If the transitions between states of consciousness can be describedlby latransition
matrix T, the mental symbolic dynamics is of finite type.

A coarse-grained partition of implies neighborhood relations between state¥ ihat
are different from those in the underlying neural phase sp&c this sense it implies
a change of topology. Also, the algebra of mental observables differs from that of neural
observables. Obviously, these two differences depend essentially on the choice of the con-
textual partition ofY, based on the choice of a phenomenal family, inducing the partition of
X. We will now show that a particular concept of stability is crucial for a proper choice of
such a partition and, thus, crucial for a properly conceived relation betwesamdY .

The crucial demand for contextual emergence is that the equivalence classes of neural

3A recent empirically based study concerning the relation between neural and mental state space repre-
sentations for wakefulness versus sleep and other, subtler examples (selective attention, intrinsic perceptual
selection) is due to Fell (2004). For alternative state space approaches see Wackermann (1999) andtHobson
al. (2000), and the following subsection.
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states inX and, hence, the mental statesvibe structurally stable (in the sense of Sec. 2)
under the dynamics iX. Consider, e.g., the partition dfinto the mental states “wakeful-
ness” and “sleep” leading to two disjoint setsXih Given an appropriate discretization of
time, the transition matrix¥ is cyclic with T2 = E (E denoting the 2 2 unit matrix). That

is, the coarse-grained description provides a limit torus. By contrast, a sufficiently fine-
grained partition ofY into mental states of different phenomenal content would have to be
described by a high-dimensionalirreducible transition matfrigince any such state should

be connected to any other state by a symbolic trajectory of sufficient length. In this case
the resulting symbolic dynamics is an ergodic, mixing Markov chain with a distinguished
KMS equilibrium state (Pinzaet al. 2000, Exel 2004).

These stationary and structurally stable symbolic dynamical systems have strikingly dif-
ferent consequences (beim Graben and Atmanspacher 2006). While fixed points and limit
tori do not allow for generating partitions (beim Graben 2004), aperiodic Markov chains
can be obtained from Markov partitions which are generating. Generating partitions admit
a continuous approximation of individual points in the neural phase spabg symbolic
sequences i with arbitrary precision. Hence, the neural descriptioXiand the coarse-
grained, mental description ivi are topologically equivalent.

This shows that the generating property of a partition is an important constraint for a
viable symbolic description of a system. Although this is a clear-cut criterion, generating
partitions are notoriously difficult to find in practice, and they are explicitly known for
only a few examples. Nevertheless, they are viable candidates for the implementation of
a stability criterion appropriate for the contextual emergence of mental states. A related
stability constraint has been proposed recently (Werning and Maye 2004, this issue). An
alternative approach, focusing on information constraints rather than stability, is due to
Shalizi and Moore (preprint).

3.2. Macroscopic Neural States

Another approach, leading to coarse-grained neural states without involving mental states
is based on mass potentials such as local field potentials (LFP) at the mesoscopic and the
electroencephalogram (EEG) at the macroscopic level of brain organizatioR.:Ret- R

be such an observable given by a mean field

FOO =Y i(x). (2)

where the sum extends over a populatiomafeurons and; denotes a projector of onto
thei-th coordinate axis measuring the microscopic activation ofittheneuron.

Similar to the previous subsection, the outcome$ dfave multiple realizations since
the terms in the sum in Eq. (2) can be arranged arbitrarily. Therefore, two neural activation
vectorsx,y can lead to the same valé€x) = F(y) (e.g., whenf;(x) —e = fj(x) +&,i # j),
so that they are indistinguishable by meand-oénd, therefore, epistemically equivalent.
If the equivalence classes Bf in X form a finite partitionQ = {Aqg,...A/} of X, we can
again assign symbobs from an alphabeh to the cellsA; and obtain a symbolic dynamics.
In this way, experimentally well-defined meso- and macroscopic brain observables, LFP
and EEG, form a coarse-grained description of the underlying microscopic neurodynamics.
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It should be emphasized that related approaches do not involve any reference to concrete
mental or conscious states. Whether or not one wants to relate corresponding coarse-grained
neural states to mental states is left open (for attempts in this direction, see Fell (2004),
Wackermann (1999) and Hobsenhal. (2000)).

Coarse-grainings based on the symbolic encoding of EEG time series became increas-
ingly popular in recent years (Keller and Wittfeld 2004, beim Grabéeal. 2000, Frisch
et al. 2004, Frisch and beim Graben 2005, Drenhatial. 2006, Schack 2004, Steuet
al. 2004). Since such partitions are not induced by well-defined mental observables, it is
unclear whether the stability conditions required for contextual emergence are satisfied. It
is, thus, particularly important to check this carefully.

One option to do thisis to look for Markov partitions of the phase space which minimize
correlations between their cells, thus creating a Markov process for the symbolic dynamics
of the meso- or macro- observables if the dynamic¥iis chaotic? Since Markov par-
titions are generating, they can be operationally identified by the fact that the dynamical
entropy for a generating partition is the supremum over all possible partitions, the so-called
Kolmogorov-Sinai entropy (see Atmanspacher (1997) for an annotated introduction). lter-
ative partitioning algorithms in this and similar contexts have been discussed by Froyland
(2001): Starting with an initial partition, those sets which contribute to the greatest mass of
the assumed invariant ergodic measure are refined iteratively. Optimal partitions are thereby
generated by a dynamics in “partition space”.

Alternatively, the measured meso- or macroscopic observables can be analyzed by seg-
mentation techniques (Lehmaehal. 1987, Wackermanat al. 1993, Hobsoret al. 2000,

Hutt 2004, Schack 2004) A recent proposal to implement this is due to Froyland (2005):
One tries to partition the spaceinto almost invariant setsuch that trajectories spend most

of the time within individual cells of the partition, and transitions between cells are likely

at larger time scales. In this way, the dynamics on short time scales is described by cyclic
transition matrices, whereas large time scales yield descriptions by Markov processes with
irreducible transition matrices. The separation of time scales provides, then, a contextual
criterion for properly defined macroscopic brain states. For a related approach see Gaveau
and Schulman (2005).

3.3. Remarkson Symbol Grounding

Thesymbol grounding problemosed by Harnad (1990) refers to the problem of assigning
meaning to symbols on purely syntactic grounds, as proposed by cognitivists such as Fodor
and Pylyshin (1988). This entails the question of how conscious mental states with phe-
nomenal content can be characterized by their NCC. Chalmers (2000) defined an NCC for
phenomenal content as a neural systémwith “systematicity in the correlation”, meaning

that the representation of a contenthhis correlated with a representation of that content

in consciousness. In other words, there should be a mapping from the neural state space
X onto the space of conscious stadésuch that regions X are related to phenomenal

4Evidence for chaotic brain processes has often been reported (cf. Kaneko and Tsuda 2000, and references
therein).

5Lehmanret al. (1987) called the corresponding states “brain microstates” or “atoms of thought”, express-
ing the suggestion that they correspond to elementary “chunks” of consciousness.
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contents irly. This mapping differs from the mapping required for contextual emergence as
discussed in Sec. 3.1. For a neural representation of content further constraints are crucial.

First, all states irB C X representing the same contéhtshould be similar in some
respect: there should be a mappimgX — X, let us call it agauge transformation, such
that B is invariant undeig, g(B) C B. In this senseg is a similarity transformation On
the other hand, graded differences in phenomenal similarity should be reflected by topolog-
ically neighboring regions in phase space. One would, therefore, require the mapioing
be a homeomorphism, leadingtmpographic mappingsf contents (Chalmers 2000).

A second requirement is theompositionalityof representations (Fodor and Pylyshin
1988, Werning and Maye 2004). Compositionality refers to the relation between syntax
and semantics insofar as the meaning of a composed (or “complex”) symbol is a function
of the meanings of its constituent symbols and the way they are put together. A prerequisite
for compositionality is the existence of syntactic rules determining which composites are
constituent®f a language and which are not. (In our approach, constituents are admissible
(sub-)sequences in the corresponding symbolic dynamics (beim Graben 2004).)

According to Harnad, these constraints need to be combined with his proposal that
symbols must be grounded in embodied cognition. They represent objects or facts from
the environments of physically embodied agents that collect information by their sensory
apparatuses and act by their motor effectors. While Harnad (1990) suggests a hybrid ar-
chitecture consisting of a neural network as an invariance detector and a classical symbol
processor to meet the compositionality constraint, we shall discuss the alternative of a uni-
fied neurodynamical system.

This can be achieved using the notionaainceptual spacess discussed by Gardenfors
(2004). A conceptual space is a vector space spanned by quantitative observables. The
conceptual space for color, e.g., can be constructed as the three-dimensional RGB coordi-
nate system or an equivalent representation supplied by the cones in the retina (Steels and
Belpaeme 2005). According to Gardenfors (2004)atural conceptis then a convex re-
gion in a conceptual space such that all elements in that region are similar in a particular
context. Implementing conceptual spaces by neural systems, we arrive again at partitions
of neurodynamical phase spaces. The idea of gauge invariance yields partitions of finest
grain, corresponding to “natural kinds” (Carnap 1928/2003, Quine 1969), that might be too
refined for other contexts.

Such contexts can be supplied by pragmatic accounts. Suppose a toy-world in which
only orange objects are eatable, and all other objects are not (Steels and Belpaeme 2005).
Then, a binary partition of color space into “orange” and “non-orange” will be sufficient
for an agent to survive. Thus, survival (or successful communication) serve as contextual
constraints for the emergence of cognitive symbols. Symbol grounding corresponds then to
categorizatiorof conceptual spaces driven by pragmatic goals.

The contextual emergence of symbols in partitioned conceptual spaces raises the ques-
tion of the stability of the symbols. The dynamics that has to be taken into account now
is, however, not neurodynamics but rather sociodynamics: the evolution of populations of
cognitive agents. (Neurodynamically, concepts are static objects given by the cells of a
partition.) An interesting approach in this sense has been developed within the framework
of evolutionary game theorgSteels and Belpaeme 2005, Jager 2004, van Rooy 2004). In
these models the phase space is spanned by the population numbers of agents with com-
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peting strategies. The outcome of the games is assessed by a utility function which in turn
determines the number of offspring of the players. In cognitive applications of evolutionary
game theory, offspring means adoption of the winning strategy by other players.

If categories or concepts are given by partitions of conceptual spaces, competing strate-
gies are different partitions of the same local conceptual spaces shared by different agents.
Evolutionary game theory then describes a dynamics in partition space similar to the search
for optimal partitions by iterative algorithms (Froyland 2001). Evolutionary stable strate-
gies are asymptotically stable fixed points in evolutionary game theory (Jager 2004). This
stability criterion means that cultural evolution grounds symbols in shared partitions of local
conceptual spaces of cognitive agents.

The structural stability of dynamically evolving partitions can be illustrated by the
“naming game” (van Rooy 2004). When a categorization in conceptual space is fixed the
cells are labeled by symbols of an alphaBetThis can be done arbitrarily by convention,
or it can be achieved by another pragmatic game that optimizes the utility reward. For in-
stance, assume that two meanimgs np assign two symbolic formg, f,, thatmy is less
complex thanm,, and the same for the fornfs, f,. For such a scenario, van Rooy (2004)
found only two evolutionarily stable strategies: tHern strategywhich assigns more com-
plex forms to more complex meanings, and #mi-Horn strategyperforming otherwise.
Since the basin of attraction of the Horn strategy is larger than that of the anti-Horn strategy
(Jager 2004), the Horn strategy provides a higher degree of structural stability.

4. Compatibility of Psychological Descriptions

Itis an old and much discussed question whether and, if yes, how psychology could become
a unified science, integrating the many approaches and models that constitute its contempo-
rary situation. It is often argued that the largely fragmented appearance of psychology (and
cognitive science as well) is due to the fact that psychology is still in a preparadigmatic,
“immature” state. Some have even argued that this situation is unavoidable (e.g., Koch
1983, Gardner 1992) and should be considered as the strength of psychology (e.g., Viney
1989, McNally 1992) rather than an undesirable affair.

From the perspective of the philosophy of mind, arguments against the possibility of a
unified science of psychology have been presented as well. Most prominent are the accounts
of Kim (1992, 1993) and Fodor (1997), both using the scheme of multiple realization in the
framework of supervenience to reject unification. Shapiro (in press) has recently pointed
out particular weak points in their arguments.

On the other hand, there is a growing interest in articulating visions for a unified sci-
ence of psychology, cognition, or consciousness (see, e.g., Newell 1990, Anderson 1996).
Recently, various approaches have been proposed to reach a degree of coherence compara-
ble to established sciences as, e.g., physics with well-defined relations between its different
disciplines. Examples are approaches such as “psychological behaviorism” (Staats 1996,
1999), “unified psychology” (Sternberg and Grigorenko 2001, Sternbeay. 2001), and
the “tree of knowledge system” (Henriques 2003). A key feature in the latter program is the
commensurabilitpf competing approaches in psychology, explicated by Yanchar and Slife
(1997) and Slife (2000).
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This section presents a way in which the notion of commensurable models can be im-
plemented in a formally rigorous fashion. A suitable way to formulate commensurability
in technical terms is related to the conceptcoimpatibility. Briefly speaking, two models
are considered as commensurable if they are compatible in the sense that there exist well-
defined mappings between them. If this is not the case, they are incompatible. It turns
out that the scheme of contextual emergence provides some detailed and clarifying insights
how to proceed in this regard. The two levels of description whose interlevel relations are
significant for this purpose are those of neurobiology and psychology or cognitive science,
respectively. Compatible and incompatible implementations of cognitive symbol systems
have recently been discussed by beim Graben (2004).

A key result of the work by beim Graben and Atmanspacher (2006) is that a non-
generating partition is incompatible with any other partition (even if this is generating)
in the sense that there is no well-defined mapping between the partftidxsa conse-
guence, models based on such partitions are incompatible as well. Sinad &ngchosen
partition is quite unlikely to be generating, it may be suspected that the resulting incom-
patibility of models based on such patrtitions is the rule rather than the exception. While
incompatibility may admit the possibility of “partially coherent” models, the case of maxi-
mal incompatibility, also called complementarity, excludes any coherence between different
models completely.

At this point it should be clear that our notion of incompatibility is more subtle than a
“logical incompatibility” (Slife 2000) in the sense that two models are simply negations of
each other. Also, it would be interesting to compare Slife’s (2000) complementary models
with our formal approach in terms of maximally incompatible models, which are basi-
cally incoherent only in a Boolean framework. From a perspective admitting non-Boolean
descriptions, the notion of coherence acquires a more comprehensive meaning, including
complementary descriptions as representations of an underlying, more general description
(see Primas 1977).

With these remarks in mind, incompatible models due to non-generating partitions rep-
resent a significant limit to the vision of a unified or integrative science of psychology. Or,
turned positively, such a unification will be strongly facilitated if the approaches to be uni-
fied are based on generating, hence compatible, partitions that are structurally stable and
induced by well-defined mental or cognitive states. As mentioned, it is a tedious task to
identify such generating partitions. Nevertheless, the necessary formal and numerical tools
are available today and can be implemented by the symbolic description using shifts of finite
type and transition matrices. All one has to do is find transitions between mental states that
are irreducible, yielding a stationary, ergodic, and mixing Markov chain with distinguished
KMS states.

If there is a good deal of empirical plausibility for a particular partition, one might hope
that this implies that such a partition is generating (at least in an approximate sense) and,
thus, that the corresponding mental or cognitive states are stable (in the sense of the KMS
condition). However, there may be cases of conflict between the empirical and the theoret-
ical constraint on a proper partition. In such cases, one has to face the possibility that the

6Two partitions®; and P, are (in)compatible if theio-algebras are (not) identical up temeasure zero.
Two partitions are maximally incompatible, or complementary, if tlieilgebras are disjoint up to the entire
phase spack (cf. beim Graben and Atmanspacher 2006).
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“empirical plausibility” of cognitive states may be unjustified, e.g., based on questionable
prejudices. If cognitive states turn out to be dynamically unstable, this theoretical argument
against their adequacy is very strong indeed.

Compatible partitions and, consequently, compatible psychological models show an-
other important feature that is occasionally addressed in current literature: the topologi-
cal equivalence of representations in neurodynamic and mental state spaces (cf. Metzinger
2003, p. 619, and Fell (2004) for empirically based examples). Topological equivalence
ensures that the mapping betweérandy is faithful in the sense that the two state space
representations yield equivalent information about the system (see Sec. 2). Non-generating,
incompatible partitions do not provide representation¥ that are topologically equivalent
with the underlying representation X.

5. Summary

The relation between mental states and neural states is discussed in the framework of a
recently proposed scheme of interlevel relations called contextual emergence. According
to this proposal, knowledge of the neural description provides necessary but not sufficient
conditions for a proper psychological description. Sufficient conditions can be defined by
contingent contexts at the cognitive (phenomenal) level and implemented as stability criteria
at the underlying neural level.

This procedure has been demonstrated using the terminology of symbolic dynamics at
the cognitive level. Equivalence classes of neural states are defined as neural correlates of
mental states represented symbolically. Mental states are well-defined if criteria of tem-
poral and structural stability are satisfied for their neural correlates. These criteria can be
implemented either by generating or, more specifically, Markov partitions; or by partitions
of systems with asymptotically stable fixed points or limit tori. This implies that proper
mental or cognitive states must satisfy appropriate stability conditions.

If this is not explicitly taken care of for chaotic systems admitting generating partitions,
one has to expect thatd hocselected partitions are not generating. As a consequence,
models based on such partitions are incompatible. This may be a possible source of the
long-standing problem of how to develop a unified science of psychology. Only for care-
fully chosen generating partitions it can be guaranteed that different cognitive models are
compatible and, hence, can have transparent relations with respect to each other.

Moreover, psychological (or cognitive) models are topologically equivalent with their
neurobiological basis only if they are constructed from generating partitions. Without cog-
nitive contexts serving as sufficient conditions for compatibility and topological equiva-
lence, the neurobiological level of description provides only necessary conditions for psy-
chological descriptions.
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